我有两个3D点云,我想使用opencv找到刚性变换矩阵(平移,旋转,所有3个轴之间的恒定缩放)。
我找到了estimateRigidTransformation函数,但它仅适用于2D点
此外,我发现estimateAffine3D,但它似乎不支持严格的转换模式。
我是否需要编写自己的刚性转换函数?
答案 0 :(得分:1)
我没有在OpenCV中找到所需的功能,所以我编写了自己的实现。基于OpenSFM的想法。
cv::Vec3d
CalculateMean(const cv::Mat_<cv::Vec3d> &points)
{
cv::Mat_<cv::Vec3d> result;
cv::reduce(points, result, 0, CV_REDUCE_AVG);
return result(0, 0);
}
cv::Mat_<double>
FindRigidTransform(const cv::Mat_<cv::Vec3d> &points1, const cv::Mat_<cv::Vec3d> points2)
{
/* Calculate centroids. */
cv::Vec3d t1 = -CalculateMean(points1);
cv::Vec3d t2 = -CalculateMean(points2);
cv::Mat_<double> T1 = cv::Mat_<double>::eye(4, 4);
T1(0, 3) = t1[0];
T1(1, 3) = t1[1];
T1(2, 3) = t1[2];
cv::Mat_<double> T2 = cv::Mat_<double>::eye(4, 4);
T2(0, 3) = -t2[0];
T2(1, 3) = -t2[1];
T2(2, 3) = -t2[2];
/* Calculate covariance matrix for input points. Also calculate RMS deviation from centroid
* which is used for scale calculation.
*/
cv::Mat_<double> C(3, 3, 0.0);
double p1Rms = 0, p2Rms = 0;
for (int ptIdx = 0; ptIdx < points1.rows; ptIdx++) {
cv::Vec3d p1 = points1(ptIdx, 0) + t1;
cv::Vec3d p2 = points2(ptIdx, 0) + t2;
p1Rms += p1.dot(p1);
p2Rms += p2.dot(p2);
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
C(i, j) += p2[i] * p1[j];
}
}
}
cv::Mat_<double> u, s, vh;
cv::SVD::compute(C, s, u, vh);
cv::Mat_<double> R = u * vh;
if (cv::determinant(R) < 0) {
R -= u.col(2) * (vh.row(2) * 2.0);
}
double scale = sqrt(p2Rms / p1Rms);
R *= scale;
cv::Mat_<double> M = cv::Mat_<double>::eye(4, 4);
R.copyTo(M.colRange(0, 3).rowRange(0, 3));
cv::Mat_<double> result = T2 * M * T1;
result /= result(3, 3);
return result.rowRange(0, 3);
}
答案 1 :(得分:0)
我发现PCL是OpenCV的一个很好的附件。看看他们的Iterative Closest Point (ICP) example。提供的示例注册两个点云,然后显示刚性转换。
答案 2 :(得分:0)
这是我的rmsd代码:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <assert.h>
typedef struct
{
float m[4][4];
} MATRIX;
#define vdiff2(a,b) ( ((a)[0]-(b)[0]) * ((a)[0]-(b)[0]) + \
((a)[1]-(b)[1]) * ((a)[1]-(b)[1]) + \
((a)[2]-(b)[2]) * ((a)[2]-(b)[2]) )
static double alignedrmsd(float *v1, float *v2, int N);
static void centroid(float *ret, float *v, int N);
static int getalignmtx(float *v1, float *v2, int N, MATRIX *mtx);
static void crossproduct(float *ans, float *pt1, float *pt2);
static void mtx_root(MATRIX *mtx);
static int almostequal(MATRIX *a, MATRIX *b);
static void mulpt(MATRIX *mtx, float *pt);
static void mtx_mul(MATRIX *ans, MATRIX *x, MATRIX *y);
static void mtx_identity(MATRIX *mtx);
static void mtx_trans(MATRIX *mtx, float x, float y, float z);
static int mtx_invert(float *mtx, int N);
static float absmaxv(float *v, int N);
/*
calculate rmsd between two structures
Params: v1 - first set of points
v2 - second set of points
N - number of points
mtx - return for transfrom matrix used to align structures
Returns: rmsd score
Notes: mtx can be null. Transform will be rigid. Inputs must
be previously aligned for sequence alignment
*/
double rmsd(float *v1, float *v2, int N, float *mtx)
{
float cent1[3];
float cent2[3];
MATRIX tmtx;
MATRIX tempmtx;
MATRIX move1;
MATRIX move2;
int i;
double answer;
float *temp1 = 0;
float *temp2 = 0;
int err;
assert(N > 3);
temp1 = malloc(N * 3 * sizeof(float));
temp2 = malloc(N * 3 * sizeof(float));
if(!temp1 || !temp2)
goto error_exit;
centroid(cent1, v1, N);
centroid(cent2, v2, N);
for(i=0;i<N;i++)
{
temp1[i*3+0] = v1[i*3+0] - cent1[0];
temp1[i*3+1] = v1[i*3+1] - cent1[1];
temp1[i*3+2] = v1[i*3+2] - cent1[2];
temp2[i*3+0] = v2[i*3+0] - cent2[0];
temp2[i*3+1] = v2[i*3+1] - cent2[1];
temp2[i*3+2] = v2[i*3+2] - cent2[2];
}
err = getalignmtx(temp1, temp2, N, &tmtx);
if(err == -1)
goto error_exit;
mtx_trans(&move1, -cent2[0], -cent2[1], -cent2[2]);
mtx_mul(&tempmtx, &move1, &tmtx);
mtx_trans(&move2, cent1[0], cent1[1], cent1[2]);
mtx_mul(&tmtx, &tempmtx, &move2);
memcpy(temp2, v2, N * sizeof(float) * 3);
for(i=0;i<N;i++)
mulpt(&tmtx, temp2 + i * 3);
answer = alignedrmsd(v1, temp2, N);
free(temp1);
free(temp2);
if(mtx)
memcpy(mtx, &tmtx.m, 16 * sizeof(float));
return answer;
error_exit:
free(temp1);
free(temp2);
if(mtx)
{
for(i=0;i<16;i++)
mtx[i] = 0;
}
return sqrt(-1.0);
}
/*
calculate rmsd between two aligned structures (trivial)
Params: v1 - first structure
v2 - second structure
N - number of points
Returns: rmsd
*/
static double alignedrmsd(float *v1, float *v2, int N)
{
double answer =0;
int i;
for(i=0;i<N;i++)
answer += vdiff2(v1 + i *3, v2 + i * 3);
return sqrt(answer/N);
}
/*
compute the centroid
*/
static void centroid(float *ret, float *v, int N)
{
int i;
ret[0] = 0;
ret[1] = 0;
ret[2] = 0;
for(i=0;i<N;i++)
{
ret[0] += v[i*3+0];
ret[1] += v[i*3+1];
ret[2] += v[i*3+2];
}
ret[0] /= N;
ret[1] /= N;
ret[2] /= N;
}
/*
get the matrix needed to align two structures
Params: v1 - reference structure
v2 - structure to align
N - number of points
mtx - return for rigid body alignment matrix
Notes: only calculates rotation part of matrix.
assumes input has been aligned to centroids
*/
static int getalignmtx(float *v1, float *v2, int N, MATRIX *mtx)
{
MATRIX A = { {{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,1}} };
MATRIX At;
MATRIX Ainv;
MATRIX temp;
float tv[3];
float tw[3];
float tv2[3];
float tw2[3];
int k, i, j;
int flag = 0;
float correction;
correction = absmaxv(v1, N * 3) * absmaxv(v2, N * 3);
for(k=0;k<N;k++)
for(i=0;i<3;i++)
for(j=0;j<3;j++)
A.m[i][j] += (v1[k*3+i] * v2[k*3+j])/correction;
while(flag < 3)
{
for(i=0;i<4;i++)
for(j=0;j<4;j++)
At.m[i][j] = A.m[j][i];
memcpy(&Ainv, &A, sizeof(MATRIX));
/* this will happen if all points are in a plane */
if( mtx_invert((float *) &Ainv, 4) == -1)
{
if(flag == 0)
{
crossproduct(tv, v1, v1+3);
crossproduct(tw, v2, v2+3);
}
else
{
crossproduct(tv2, tv, v1);
crossproduct(tw2, tw, v2);
memcpy(tv, tv2, 3 * sizeof(float));
memcpy(tw, tw2, 3 * sizeof(float));
}
for(i=0;i<3;i++)
for(j=0;j<3;j++)
A.m[i][j] += tv[i] * tw[j];
flag++;
}
else
flag = 5;
}
if(flag != 5)
return -1;
mtx_mul(&temp, &At, &A);
mtx_root(&temp);
mtx_mul(mtx, &temp, &Ainv);
return 0;
}
/*
get the crossproduct of two vectors.
Params: ans - return pinter for answer.
pt1 - first vector
pt2 - second vector.
Notes: crossproduct is at right angles to the two vectors.
*/
static void crossproduct(float *ans, float *pt1, float *pt2)
{
ans[0] = pt1[1] * pt2[2] - pt1[2] * pt2[1];
ans[1] = pt1[0] * pt2[2] - pt1[2] * pt2[0];
ans[2] = pt1[0] * pt2[1] - pt1[1] * pt2[0];
}
/*
Denman-Beavers square root iteration
*/
static void mtx_root(MATRIX *mtx)
{
MATRIX Y = *mtx;
MATRIX Z;
MATRIX Y1;
MATRIX Z1;
MATRIX invY;
MATRIX invZ;
MATRIX Y2;
int iter = 0;
int i, ii;
mtx_identity(&Z);
do
{
invY = Y;
invZ = Z;
if( mtx_invert((float *) &invY, 4) == -1)
return;
if( mtx_invert((float *) &invZ, 4) == -1)
return;
for(i=0;i<4;i++)
for(ii=0;ii<4;ii++)
{
Y1.m[i][ii] = 0.5 * (Y.m[i][ii] + invZ.m[i][ii]);
Z1.m[i][ii] = 0.5 * (Z.m[i][ii] + invY.m[i][ii]);
}
Y = Y1;
Z = Z1;
mtx_mul(&Y2, &Y, &Y);
}
while(!almostequal(&Y2, mtx) && iter++ < 20 );
*mtx = Y;
}
/*
Check two matrices for near-enough equality
Params: a - first matrix
b - second matrix
Returns: 1 if almost equal, else 0, epsilon 0.0001f.
*/
static int almostequal(MATRIX *a, MATRIX *b)
{
int i, ii;
float epsilon = 0.001f;
for(i=0;i<4;i++)
for(ii=0;ii<4;ii++)
if(fabs(a->m[i][ii] - b->m[i][ii]) > epsilon)
return 0;
return 1;
}
/*
multiply a point by a matrix.
Params: mtx - matrix
pt - the point (transformed)
*/
static void mulpt(MATRIX *mtx, float *pt)
{
float ans[4] = {0};
int i;
int ii;
for(i=0;i<4;i++)
{
for(ii=0;ii<3;ii++)
{
ans[i] += pt[ii] * mtx->m[ii][i];
}
ans[i] += mtx->m[3][i];
}
pt[0] = ans[0];
pt[1] = ans[1];
pt[2] = ans[2];
}
/*
multiply two matrices.
Params: ans - return pointer for answer.
x - first matrix
y - second matrix.
Notes: ans may not be equal to x or y.
*/
static void mtx_mul(MATRIX *ans, MATRIX *x, MATRIX *y)
{
int i;
int ii;
int iii;
for(i=0;i<4;i++)
for(ii=0;ii<4;ii++)
{
ans->m[i][ii] = 0;
for(iii=0;iii<4;iii++)
ans->m[i][ii] += x->m[i][iii] * y->m[iii][ii];
}
}
/*
create an identity matrix.
Params: mtx - return pointer.
*/
static void mtx_identity(MATRIX *mtx)
{
int i;
int ii;
for(i=0;i<4;i++)
for(ii=0;ii<4;ii++)
{
if(i==ii)
mtx->m[i][ii] = 1.0f;
else
mtx->m[i][ii] = 0;
}
}
/*
create a translation matrix.
Params: mtx - return pointer for matrix.
x - x translation.
y - y translation.
z - z translation
*/
static void mtx_trans(MATRIX *mtx, float x, float y, float z)
{
mtx->m[0][0] = 1;
mtx->m[0][1] = 0;
mtx->m[0][2] = 0;
mtx->m[0][3] = 0;
mtx->m[1][0] = 0;
mtx->m[1][1] = 1;
mtx->m[1][2] = 0;
mtx->m[1][3] = 0;
mtx->m[2][0] = 0;
mtx->m[2][1] = 0;
mtx->m[2][2] = 1;
mtx->m[2][3] = 0;
mtx->m[3][0] = x;
mtx->m[3][1] = y;
mtx->m[3][2] = z;
mtx->m[3][3] = 1;
}
/*
matrix invert routine
Params: mtx - the matrix in raw format, in/out
N - width and height
Returns: 0 on success, -1 on fail
*/
static int mtx_invert(float *mtx, int N)
{
int indxc[100]; /* these 100s are the only restriction on matrix size */
int indxr[100];
int ipiv[100];
int i, j, k;
int irow, icol;
double big;
double pinv;
int l, ll;
double dum;
double temp;
assert(N <= 100);
for(i=0;i<N;i++)
ipiv[i] = 0;
for(i=0;i<N;i++)
{
big = 0.0;
/* find biggest element */
for(j=0;j<N;j++)
if(ipiv[j] != 1)
for(k=0;k<N;k++)
if(ipiv[k] == 0)
if(fabs(mtx[j*N+k]) >= big)
{
big = fabs(mtx[j*N+k]);
irow = j;
icol = k;
}
ipiv[icol]=1;
if(irow != icol)
for(l=0;l<N;l++)
{
temp = mtx[irow * N + l];
mtx[irow * N + l] = mtx[icol * N + l];
mtx[icol * N + l] = temp;
}
indxr[i] = irow;
indxc[i] = icol;
/* if biggest element is zero matrix is singular, bail */
if(mtx[icol* N + icol] == 0)
goto error_exit;
pinv = 1.0/mtx[icol * N + icol];
mtx[icol * N + icol] = 1.0;
for(l=0;l<N;l++)
mtx[icol * N + l] *= pinv;
for(ll=0;ll<N;ll++)
if(ll != icol)
{
dum = mtx[ll * N + icol];
mtx[ll * N + icol] = 0.0;
for(l=0;l<N;l++)
mtx[ll * N + l] -= mtx[icol * N + l]*dum;
}
}
/* unscramble matrix */
for (l=N-1;l>=0;l--)
{
if (indxr[l] != indxc[l])
for (k=0;k<N;k++)
{
temp = mtx[k * N + indxr[l]];
mtx[k * N + indxr[l]] = mtx[k * N + indxc[l]];
mtx[k * N + indxc[l]] = temp;
}
}
return 0;
error_exit:
return -1;
}
/*
get the asolute maximum of an array
*/
static float absmaxv(float *v, int N)
{
float answer;
int i;
for(i=0;i<N;i++)
if(answer < fabs(v[i]))
answer = fabs(v[i]);
return answer;
}
#include <stdio.h>
/*
debug utlitiy
*/
static void printmtx(FILE *fp, MATRIX *mtx)
{
int i, ii;
for(i=0;i<4;i++)
{
for(ii=0;ii<4;ii++)
fprintf(fp, "%f, ", mtx->m[i][ii]);
fprintf(fp, "\n");
}
}
int rmsdmain(void)
{
float one[4*3] = {0,0,0, 1,0,0, 2,1,0, 0,3,1};
float two[4*3] = {0,0,0, 0,1,0, 1,2,0, 3,0,1};
MATRIX mtx;
double diff;
int i;
diff = rmsd(one, two, 4, (float *) &mtx.m);
printf("%f\n", diff);
printmtx(stdout, &mtx);
for(i=0;i<4;i++)
{
mulpt(&mtx, two + i * 3);
printf("%f %f %f\n", two[i*3], two[i*3+1], two[i*3+2]);
}
return 0;
}