我被告知使用插入符号包来执行支持向量机回归,对我拥有的数据集进行10倍交叉验证。我正在针对151个变量绘制我的响应变量。我做了以下事情: -
> ctrl <- trainControl(method = "repeatedcv", repeats = 10)
> set.seed(1500)
> mod <- train(RT..seconds.~., data=cadets, method = "svmLinear", trControl = ctrl)
我得到了
C RMSE Rsquared RMSE SD Rsquared SD
0.2 50 0.8 20 0.1
0.5 60 0.7 20 0.2
1 60 0.7 20 0.2
但我希望能够看一下我的折叠,并且对于每个折叠,预测值与实际值的接近程度。我怎么去看这个?
此外,它说: -
RMSE was used to select the optimal model using the smallest value.
The final value used for the model was C = 0.
我只是想知道这意味着什么以及C在上表中代表什么?
RT (seconds) 76_TI2 114_DECC 120_Lop 212_PCD 236_X3Av
38 4.086 1.2 2.322 0 0.195
40 2.732 0.815 1.837 1.113 0.13
41 4.049 1.153 2.117 2.354 0.094
41 4.049 1.153 2.117 3.838 0.117
42 4.56 1.224 2.128 2.38 0.246
42 2.96 0.909 1.686 0.972 0.138
42 3.237 0.96 1.922 1.202 0.143
44 2.989 0.8 1.761 2.034 0.11
44 1.993 0.5 1.5 0 0.102
44 2.957 0.8 1.761 0.988 0.141
44 2.597 0.889 1.888 1.916 0.114
44 2.428 0.691 1.436 1.848 0.089
这是我的数据集的snipet。我正在尝试对151个变量设置RT秒。
由于
答案 0 :(得分:19)
您必须通过trainControl
对象中的“savePred”选项保存您的简历预测。我不确定你的“学员”数据来自哪个包,但这里有一个使用虹膜的简单例子:
> library(caret)
> ctrl <- trainControl(method = "cv", savePred=T, classProb=T)
> mod <- train(Species~., data=iris, method = "svmLinear", trControl = ctrl)
> head(mod$pred)
pred obs setosa versicolor virginica rowIndex .C Resample
1 setosa setosa 0.982533940 0.009013592 0.008452468 11 0.25 Fold01
2 setosa setosa 0.955755054 0.032289120 0.011955826 35 0.25 Fold01
3 setosa setosa 0.941292675 0.044903583 0.013803742 46 0.25 Fold01
4 setosa setosa 0.983559919 0.008310323 0.008129757 49 0.25 Fold01
5 setosa setosa 0.972285699 0.018109218 0.009605083 50 0.25 Fold01
6 versicolor versicolor 0.007223973 0.971168170 0.021607858 59 0.25 Fold01
编辑:“C”是SVM的调整参数之一。有关详细信息,请查看kernlab包中ksvm
函数的帮助。
EDIT2:琐碎的回归示例
> library(caret)
> ctrl <- trainControl(method = "cv", savePred=T)
> mod <- train(Sepal.Length~., data=iris, method = "svmLinear", trControl = ctrl)
> head(mod$pred)
pred obs rowIndex .C Resample
1 4.756119 4.8 13 0.25 Fold01
2 4.910948 4.8 31 0.25 Fold01
3 5.094275 4.9 38 0.25 Fold01
4 4.728503 4.8 46 0.25 Fold01
5 5.192965 5.3 49 0.25 Fold01
6 5.969479 5.9 62 0.25 Fold01