我尝试关注this link来创建自定义SVM并通过一些交叉验证来运行它。我的主要原因是在我的网格搜索中运行Sigma,Cost和Epsilon参数,而最近的插入符模型(svmRadial)只能执行其中的两个。
当我尝试运行下面的代码时,我在网格的每次迭代中都会出现以下错误:
Warning in eval(expr, envir, enclos) :
model fit failed for Fold1.: sigma=0.2, C=2, epsilon=0.1 Error in if (!isS4(modelFit) & !(method$label %in% c("Ensemble Partial Least Squares Regression", :
argument is of length zero
即使我逐字地复制链接中的代码,我也会遇到类似的错误,而且我不确定如何解决它。我发现了this link,它介绍了如何构建自定义模型,并且我看到了引用此错误的位置,但仍然不确定问题是什么。我的代码如下:
#Generate Tuning Criteria across Parameters
C <- c(1,2)
sigma <- c(0.1,.2)
epsilon <- c(0.1,.2)
grid <- data.frame(C,sigma)
#Parameters
prm <- data.frame(parameter = c("C", "sigma","epsilon"),
class = rep("numeric", 3),
label = c("Cost", "Sigma", "Epsilon"))
#Tuning Grid
svmGrid <- function(x, y, len = NULL) {
expand.grid(sigma = sigma,
C = C,
epsilon = epsilon)
}
#Fit Element Function
svmFit <- function(x, y, wts, param, lev, last, weights, classProbs, ...) {
ksvm(x = as.matrix(x), y = y,
type = "eps-svr",
kernel = rbfdot,
kpar = list(sigma = param$sigma),
C = param$C,
epsilon = param$epsilon,
prob.model = classProbs,
...)
}
#Predict Element Function
svmPred <- function(modelFit, newdata, preProc = NULL, submodels = NULL)
predict(modelFit, newdata)
#Sort Element Function
svmSort <- function(x) x[order(x$C),]
#Model
newSVM <- list(type="Regression",
library="kernlab",
loop = NULL,
parameters = prm,
grid = svmGrid,
fit = svmFit,
predict = svmPred,
prob = NULL,
sort = svmSort,
levels = NULL)
#Train
tc<-trainControl("repeatedcv",number=2, repeats = 0,
verboseIter = T,savePredictions=T)
svmCV <- train(
Y~ 1
+ X1
+ X2
,data = data_nn,
method=newSVM,
trControl=tc
,preProc = c("center","scale"))
svmCV
答案 0 :(得分:0)
在查看提供的second link之后,我决定尝试在模型的参数中包含一个标签,这就解决了问题!它很有趣,因为插入符号文档说价值是可选的,但如果它有效,我不能抱怨。
#Model
newSVM <- list(label="My Model",
type="Regression",
library="kernlab",
loop = NULL,
parameters = prm,
grid = svmGrid,
fit = svmFit,
predict = svmPred,
prob = NULL,
sort = svmSort,
levels = NULL)