上周,我发布了一段代码来应用Dijkstra算法来计算图中节点之间的最短路径。我做了一些改进但仍然坚持。
我有一个班级Graph
。它应该由另外两个类构成:类Edge
的实例向量,以及类Vertex
元素的另一个向量。每个顶点都有一个ID和carried
来保持与源节点的累积距离,每个边都有两个顶点和一个权重。
班级Graph
有一个方法;它的名字是shortest
,它有两个顶点作为参数:第一个是图的来源,第二个是目的地。
我的方法是尝试消除连接到源顶点的边,并将其权重添加到相邻顶点,并将其保存在carried
Vertex
中的字段中,以便跟踪情况每个顶点。然后我们在其carried
上选择最低的顶点作为新的源,并反复重复相同的操作,直到我们只有一条边。
为了演示结果,我初始化了一个有五个顶点vers[0], vers[1], vers[2], vers[3], vers[4]
的图形,并且有10个边连接从eds[0], eds[1], ....eds[9]
开始的那些顶点。
目标顶点为vers[4]
,而源顶点vers[2]
由4条边连接,因此在应用方法shortest
时,如下面的代码所示,我应该摆脱在所有4个边缘中,最后在第一轮结束时有6个边缘。结果如下:
Hello, This is a graph
0____1 5
0____3 4
0____4 6
1____3 5
1____4 7
3____4 3
size of edges 6
size of vertices 4
curried vertex_0 9
curried vertex_1 2
curried vertex_2 1
curried vertex_3 8
我们可以看到到目前为止结果看起来很好,因为我们没有看到源顶点是2,并且在消除连接到源顶点的四条边之后我们最终只有6条边。另外,我们必须做右手边,或者每个边缘的重量,然后我们得到每个剩余顶点的carried
。
现在,如果我们进行第二轮,我们会得到以下结果:
Hello, This is a graph
0____1 5
0____4 6
1____4 7
size of edges 3
size of vertices 3
curried vertex_0 9
curried vertex_1 2
curried vertex_2 8
正如你所看到的,我们得到了3个边缘(这是正确的)和3个顶点(也是正确的),并且边缘的权重是正确的,但问题是我的每个都有不正确的carried
值顶点,这将使代码选择一个错误的源继续下一轮。也就是说,我们应该5, 2, 4
而不是9, 2, 8
。
我可以看到问题所在,但我不明白为什么我没有得到正确的解决方案。我认为问题位于代码中显示的带星号的行之间。
以下是代码:
#include<iostream>
#include<vector>
#include <stdlib.h> // for rand()
using namespace std;
class Vertex
{
private:
unsigned int id; // the name of the vertex
unsigned int carried; // the weight a vertex may carry when calculating shortest path
public:
unsigned int get_id(){return id;};
unsigned int get_carried(){return carried;};
void set_id(unsigned int value) {id = value;};
void set_carried(unsigned int value) {carried = value;};
inline bool operator==( const Vertex& ver_1){ return id == ver_1.id;};
Vertex(unsigned int init_val = 0, unsigned int init_carried = 0) :id (init_val), carried(init_carried) // constructor
{}
~Vertex() {}; // destructor
};
class Edge
{
private:
Vertex first_vertex; // a vertex on one side of the edge
Vertex second_vertex; // a vertex on the other side of the edge
unsigned int weight; // the value of the edge ( or its weight )
public:
unsigned int get_weight() {return weight;};
void set_weight(unsigned int value) {weight = value;};
Vertex get_ver_1(){return first_vertex;};
Vertex get_ver_2(){return second_vertex;};
void set_first_vertex(Vertex v1) {first_vertex = v1;};
void set_second_vertex(Vertex v2) {second_vertex = v2;};
Edge(const Vertex& vertex_1 = 0, const Vertex& vertex_2 = 0, unsigned int init_weight = 0)
: first_vertex(vertex_1), second_vertex(vertex_2), weight(init_weight) {}
~Edge() {} ; // destructor
};
class Graph
{
private:
std::vector<Vertex> vertices;
std::vector<Edge> edges;
public:
Graph(vector<Vertex> ver_vector, vector<Edge> edg_vector)
: vertices(ver_vector), edges(edg_vector){}
~Graph() {}
vector<Vertex> get_vertices(){return vertices;}
vector<Edge> get_edges(){return edges;}
void set_vertices(vector<Vertex> vector_value) {vertices = vector_value;}
void set_edges(vector<Edge> vector_ed_value) {edges = vector_ed_value;}
unsigned int shortest(Vertex src, Vertex dis);
};
unsigned int Graph::shortest(Vertex src, Vertex dis) {
vector<Vertex> ver_out;
vector<Edge> track;
for (unsigned int i = 0; i < edges.size();) {
if ((edges[i].get_ver_1() == src) || (edges[i].get_ver_2() == src)) {
track.push_back(edges[i]);
if (edges[i].get_ver_1() == src) {
ver_out.push_back(edges[i].get_ver_2());
ver_out.back().set_carried(edges[i].get_weight());
} else {
ver_out.push_back(edges[i].get_ver_1());
ver_out.back().set_carried(edges[i].get_weight());
}
edges.erase(edges.begin() + i);
} else {
++i; // increment only if not erasing
}
}
for(unsigned int i = 0; i < vertices.size(); ++i)
for(unsigned int iii = 0; iii < ver_out.size(); ++iii) {
if(vertices[i] == ver_out[iii]){vertices[i].set_carried(ver_out[iii].get_carried());};};
for(unsigned int i = 0; i < vertices.size(); ++i)
if(vertices[i] == src) vertices.erase(vertices.begin() + i);
track.clear();
if(!(ver_out[0] == dis)) {src = ver_out[0];}
else {src = ver_out[1];}
for(unsigned int i = 0; i < ver_out.size(); ++i)
if((ver_out[i].get_carried() < src.get_carried()) && (!(ver_out[i] == dis)))
src = ver_out[i];
ver_out.clear();
for(unsigned int round = 0; round < 1 ; ++round) //vertices.size()
{
for(unsigned int k = 0; k < edges.size(); )
{
if((edges[k].get_ver_1() == src) || (edges[k].get_ver_2() == src))
{
track.push_back (edges[k]);
for(unsigned int i = 0; i < vertices.size(); ++i)
{
if(track.back().get_ver_1() == vertices[i]) edges[k].get_ver_1().set_carried(vertices[i].get_carried());
if(track.back().get_ver_2() == vertices[i]) edges[k].get_ver_2().set_carried(vertices[i].get_carried());
}
if(track.back().get_ver_1() == src)
{
ver_out.push_back (track.back().get_ver_2()); //************************************
if(track.back().get_ver_2().get_carried() > (track.back().get_ver_1().get_carried() + track.back().get_weight())) //<===
ver_out.back().set_carried(track.back().get_ver_1().get_carried() + track.back().get_weight());
else ver_out.back().set_carried(track.back().get_ver_2().get_carried());
}
else{
ver_out.push_back (track.back().get_ver_1());
if(track.back().get_ver_1().get_carried() > (track.back().get_ver_2().get_carried() + track.back().get_weight())) // <===
ver_out.back().set_carried(track.back().get_ver_2().get_carried() + track.back().get_weight());
else {ver_out.back().set_carried(track.back().get_ver_1().get_carried());}
}
//*****************************
edges.erase(edges.begin() + k);
}
else{
++k; // increment only if not erasing
}
};
for(unsigned int t = 0; t < vertices.size(); ++t)
if(vertices[t] == src) vertices.erase(vertices.begin() + t);
track.clear();
if(!(ver_out[0] == dis)) {src = ver_out[0];}
else {src = ver_out[1];}
for(unsigned int tt = 0; tt < edges.size(); ++tt)
{
if(ver_out[tt].get_carried() < src.get_carried())
{
src = ver_out[tt];
}
}
ver_out.clear();
}
if(edges[0].get_ver_1() == dis) return edges[0].get_weight() +edges[0].get_ver_2().get_carried();
else return edges[0].get_weight() +edges[0].get_ver_1().get_carried();
}
int main()
{
cout<< "Hello, This is a graph"<< endl;
vector<Vertex> vers(5);
vers[0].set_id(0);
vers[1].set_id(1);
vers[2].set_id(2);
vers[3].set_id(3);
vers[4].set_id(4);
vector<Edge> eds(10);
eds[0].set_first_vertex(vers[0]);
eds[0].set_second_vertex(vers[1]);
eds[0].set_weight(5);
eds[1].set_first_vertex(vers[0]);
eds[1].set_second_vertex(vers[2]);
eds[1].set_weight(9);
eds[2].set_first_vertex(vers[0]);
eds[2].set_second_vertex(vers[3]);
eds[2].set_weight(4);
eds[3].set_first_vertex(vers[0]);
eds[3].set_second_vertex(vers[4]);
eds[3].set_weight(6);
eds[4].set_first_vertex(vers[1]);
eds[4].set_second_vertex(vers[2]);
eds[4].set_weight(2);
eds[5].set_first_vertex(vers[1]);
eds[5].set_second_vertex(vers[3]);
eds[5].set_weight(5);
eds[6].set_first_vertex(vers[1]);
eds[6].set_second_vertex(vers[4]);
eds[6].set_weight(7);
eds[7].set_first_vertex(vers[2]);
eds[7].set_second_vertex(vers[3]);
eds[7].set_weight(1);
eds[8].set_first_vertex(vers[2]);
eds[8].set_second_vertex(vers[4]);
eds[8].set_weight(8);
eds[9].set_first_vertex(vers[3]);
eds[9].set_second_vertex(vers[4]);
eds[9].set_weight(3);
unsigned int path;
Graph graf(vers, eds);
path = graf.shortest(vers[2], vers[4]);
cout<<graf.get_edges()[0].get_ver_1().get_id() <<"____"<<graf.get_edges()[0].get_ver_2().get_id() <<" "<<graf.get_edges()[0].get_weight()<< endl; //test
cout<<graf.get_edges()[1].get_ver_1().get_id() <<"____"<<graf.get_edges()[1].get_ver_2().get_id() <<" "<<graf.get_edges()[1].get_weight()<< endl; //test
cout<<graf.get_edges()[2].get_ver_1().get_id() <<"____"<<graf.get_edges()[2].get_ver_2().get_id() <<" "<<graf.get_edges()[2].get_weight()<< endl; //test
//cout<<graf.get_edges()[3].get_ver_1().get_id() <<"____"<<graf.get_edges()[3].get_ver_2().get_id() <<" "<<graf.get_edges()[3].get_weight()<< endl; //test
//cout<<graf.get_edges()[4].get_ver_1().get_id() <<"____"<<graf.get_edges()[4].get_ver_2().get_id() <<" "<<graf.get_edges()[4].get_weight()<< endl; //test
//cout<<graf.get_edges()[5].get_ver_1().get_id() <<"____"<<graf.get_edges()[5].get_ver_2().get_id() <<" "<<graf.get_edges()[5].get_weight()<< endl; //test
//cout<<graf.get_edges()[6].get_ver_1().get_id() <<"____"<<graf.get_edges()[6].get_ver_2().get_id() <<" "<<graf.get_edges()[6].get_weight()<< endl; //test
//cout<<graf.get_edges()[7].get_ver_1().get_id() <<"____"<<graf.get_edges()[7].get_ver_2().get_id() <<" "<<graf.get_edges()[7].get_weight()<< endl; //test
//cout<<graf.get_edges()[8].get_ver_1().get_id() <<"____"<<graf.get_edges()[8].get_ver_2().get_id() <<" "<<graf.get_edges()[8].get_weight()<< endl; //test
//cout<<graf.get_edges()[9].get_ver_1().get_id() <<"____"<<graf.get_edges()[9].get_ver_2().get_id() <<" "<<graf.get_edges()[9].get_weight()<< endl; //test
cout<<"size of edges "<<graf.get_edges().size()<< endl;
cout<<"size of vertices "<<graf.get_vertices().size()<< endl;
cout<<"curried vertex_0 "<<graf.get_vertices()[0].get_carried()<< endl;
cout<<"curried vertex_1 "<<graf.get_vertices()[1].get_carried()<< endl;
cout<<"curried vertex_2 "<<graf.get_vertices()[2].get_carried()<< endl;
//cout<<"curried vertex_3 "<<graf.get_vertices()[3].get_carried()<< endl;
//cout<< path << endl;
return 0;
}
答案 0 :(得分:3)
据我了解你的代码,它缺少Dijkstra算法的一些基本部分。查看dijkstra on wikipedia以查看算法的所有步骤。我在你的算法中找不到的两件事,但这绝对是Dijkstra算法的一部分:
我将包含一个有效的Dijkstra算法,因此您可以将自己的算法与之比较。它包括一些更高级的数据结构(例如优先级队列),但无论如何你迟早会遇到它。祝你好运学习和纠正!
#define MAX_VER 1000 // Maximum number of vertices
#define INFINITE 0x3fffffff // 7*f ~ 1.000.000.000
#include <vector>
#include <queue>
#include <iostream>
using namespace std;
struct edge {
int to;
int length;
edge(int to, int length) : to(to), length(length) {}
};
struct vertex {
vector<edge> edges;
int dis;
int prev;
};
vertex vertices[MAX_VER];
void reset() {
for (int i=0; i < MAX_VER; i++) {
vertices[i].edges.clear();
vertices[i].dis = INFINITE;
vertices[i].prev = -1;
}
}
void addedge(int from, int to, int length=-1, bool directed=true) {
vertices[from].edges.push_back(edge(to, length));
if (!directed) vertices[to].edges.push_back(edge(from, length));
}
typedef pair<int, int> pp;
void dijkstra(int source) {
//distance, vertex
priority_queue<pp, vector<pp>, greater<pp> > q;
vertices[source].dis = 0;
q.push(make_pair(0, source));
while (!q.empty()) {
int u = q.top().second;
int dis = q.top().first;
q.pop();
if (dis > vertices[u].dis) continue;
for (size_t i = 0; i < vertices[u].edges.size(); i++) {
edge &e = vertices[u].edges[i];
if (dis + e.length < vertices[e.to].dis) {
vertices[e.to].dis = dis + e.length;
vertices[e.to].prev = u;
q.push(make_pair(vertices[e.to].dis, e.to));
}
}
}
}
int main() {
reset();
addedge(0, 1, 5, false);
addedge(0, 2, 9, false);
addedge(0, 3, 4, false);
addedge(0, 4, 6, false);
addedge(1, 2, 2, false);
addedge(1, 3, 5, false);
addedge(1, 4, 7, false);
addedge(2, 3, 1, false);
addedge(2, 4, 8, false);
addedge(3, 4, 3, false);
dijkstra(2);
cout << "Distance from vertex 2 to 4 is: " << vertices[4].dis << endl;
return 0;
}