我正在开发一种简单的算法,使用关键点和delaunay三角测量来变换两个图像。这个想法应该很简单:
但它不起作用X_X这是我的matlab源码:
function out = myMorph(im1, p_source, p_dest, tri_source, tri_dest)
[h w] = size(im1);
%get single column vectors for source and destination image control points
Psource_x = p_source(:,1);
Psource_y = p_source(:,2);
Pdest_x = p_dest(:,1);
Pdest_y = p_dest(:,2);
%for each intermediate frame...
out = zeros(size(im1));
%get triangles. Each array is 3n x 2, where n is the number of triangles
triangles_source = [];
triangles_dest = [];
for i= 1 : size(tri_source,1)
triangle_s = getTriangle(Psource_x,Psource_y,tri_source,i);
triangle_d = getTriangle(Pdest_x,Pdest_y,tri_dest,i);
triangles_source = cat(1,triangles_source,triangle_s);
triangles_dest = cat(1,triangles_dest,triangle_d);
end
%iterate each pixel
for x=1:h
for y=1:w
%get the source and destination triangle for pixel [x y]
%source triangle
for t = 1 : 3 : size(triangles_source, 1)-2
[w1,w2,w3,inTriangle] = inTri(x,y, ...
triangles_source(t,1),triangles_source(t,2), ...
triangles_source(t+1,1),triangles_source(t+1,2), ...
triangles_source(t+2,1),triangles_source(t+2,2));
if(inTriangle == 1)
break; %point [x,y] must belong to one (and only) triangle
end
end
%source triangle
for k = 1 : 3 : size(triangles_dest, 1)-2
[w1d,w2d,w3d,inTriangleD] = inTri(x,y, ...
triangles_dest(k,1),triangles_dest(k,2), ...
triangles_dest(k+1,1),triangles_dest(k+1,2), ...
triangles_dest(k+2,1),triangles_dest(k+2,2));
if(inTriangleD == 1)
break;
end
end
v_source = [w1*triangles_source(t,1) + ...
w2*triangles_source(t+1,1) + ...
w3*triangles_source(t+2,1), ...
w1*triangles_source(t,2) + ...
w2*triangles_source(t+1,2) + ...
w3*triangles_source(t+2,2)];
v_dest = [w1d*triangles_dest(k,1) + ...
w2d*triangles_dest(k+1,1) + ...
w3d*triangles_dest(k+2,1),...
w1d*triangles_dest(k,2) + ...
w2d*triangles_dest(k+1,2) + ...
w3d*triangles_dest(k+2,2)];
if(inTriangle ~= 1 && inTriangleD ~= 1)
continue;
end
v_source = round(v_source);
v_dest = round(v_dest);
if(v_source(1)>0 && v_source(1) <= h && ...
v_source(2)>0 && v_source(2) <= w && ...
v_dest(1)>0 && v_dest(1) <= h && ...
v_dest(2)>0 && v_dest(2) <= w)
disp('pixel warped')
out(v_dest(1),v_dest(2)) = im1(v_source(1),v_source(2));
end
% else
% out(x,y) = im1(x,y);
end
end
这些是获取控制点的效用函数
%Get control points used to morph im into another image
%im -> source image
%im2 -> destination image
%linesNum -> number of lines
function [P] = getControlPoints(im, controlPtsNum)
close all
P = zeros(controlPtsNum, 2);
%select lines from source image
figure;
imshow(im,[]);title('select control points')
for i=1 : controlPtsNum
%get source control point
[x,y] = ginput(1);
P(i,:) = [x,y];
hold on
plot(x,y,'o','Color','r');
hold off
end
%Get control points used to morph im into another image and do delaunay
%triangulation using the control points
%im -> source image
%im2 -> destination image
%controlPtsNum -> number of control points
function [P,tri] = getControlPointsAndTriangulate(im, controlPtsNum)
P = getControlPoints(im, controlPtsNum);
[h w] = size(im);
%Add corners to control points
P = cat(1, P, [1 1]);
P = cat(1, P, [w 1]);
P = cat(1, P, [1 h]);
P = cat(1, P, [w h]);
tri = delaunay(P(:,1),P(:,2));
hold on
triplot(tri,P(:,1),P(:,2))
hold on
和这个函数(我在网上找到),测试一个点是否位于给定的三角形上,并返回u,v,w值:
function [w1,w2,w3,r] = inTri(vx, vy, v0x, v0y, v1x, v1y, v2x, v2y)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% inTri checks whether input points (vx, vy) are in a triangle whose
% vertices are (v0x, v0y), (v1x, v1y) and (v2x, v2y) and returns the linear
% combination weight, i.e., vx = w1*v0x + w2*v1x + w3*v2x and
% vy = w1*v0y + w2*v1y + w3*v2y. If a point is in the triangle, the
% corresponding r will be 1 and otherwise 0.
%
% This function accepts multiple point inputs, e.g., for two points (1,2),
% (20,30), vx = (1, 20) and vy = (2, 30). In this case, w1, w2, w3 and r will
% be vectors. The function only accepts the vertices of one triangle.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
v0x = repmat(v0x, size(vx,1), size(vx,2));
v0y = repmat(v0y, size(vx,1), size(vx,2));
v1x = repmat(v1x, size(vx,1), size(vx,2));
v1y = repmat(v1y, size(vx,1), size(vx,2));
v2x = repmat(v2x, size(vx,1), size(vx,2));
v2y = repmat(v2y, size(vx,1), size(vx,2));
w1 = ((vx-v2x).*(v1y-v2y) - (vy-v2y).*(v1x-v2x))./...
((v0x-v2x).*(v1y-v2y) - (v0y-v2y).*(v1x-v2x)+eps);
w2 = ((vx-v2x).*(v0y-v2y) - (vy-v2y).*(v0x-v2x))./...
((v1x-v2x).*(v0y-v2y) - (v1y-v2y).*(v0x-v2x)+eps);
w3 = 1 - w1 - w2;
r = (w1>=0) & (w2>=0) & (w3>=0) & (w1<=1) & (w2<=1) & (w3<=1);
有什么建议吗? 再见!
答案 0 :(得分:2)
我无法重现代码中的错误,因为我没有您的输入数据集,但是,根据您的描述,您可能会遇到与我昨天尝试通过三角测量变形图像时相同的问题:
源三角测量和目标三角测量中的三角形数量不同。
这可能是您在步骤中描述的内容造成的:
- 使用源控制点执行Delaunay三角测量,获得三角形网格
- 使用目标控制点执行Delaunay三角测量,获得三角形网格
醇>
Delaunay Triangulation非常聪明,它使用最少数量的三角形进行三角测量。它不知道步骤2中的控制点是从步骤1中的控制点“转换而来”。因此步骤1和2中的三角形网格可能包含不同数量的三角形!以下是一个示例以及如何解决问题:
假设您构建了2个控制点列表,“源CP”和“目标CP”。 “源CP”是案例A中的红点。“目标CP”是案例B和C中的红点(它们是相同的)。
案例A是通过“源CP”执行Delaunay三角测量获得的。
案例B是通过对“目的地CP”执行Delaunay三角测量而获得的。
请参阅?案例B包含比案例A少1个三角形!!如果发生这种情况,您无法使用案例A和B的Delaunay三角剖分中的三角形列表进行变形。
解决方法是使Case C具有相同的邻接列表以及与案例A相同数量的三角形,然后您可以使用成对三角形到三角形仿射变换方法执行图像变形。
通过在案例A中移动一个控制点获得案例C,但保留相同的邻接列表。
当然,重叠的三角形现在已经成为一个新问题。我认为你可以设置像扭曲幅度这样的约束来防止三角形重叠。此外,您发布的三角形交叉测试代码通过返回列表中与查询点相交的第一个三角形的三角形ID来考虑重叠三角形。
所以关键是你只需要为每个源 - 目的地转换对执行一次Delaunay Triangulation 。
希望这有帮助!