我写了一个python脚本,它从查询点(p)中找到表面上最近点的UV坐标。表面由四个线性边缘定义,这四个线性边缘由逆时针列出的四个已知点(p0,p1,p2,p3)组成。
(请忽略小红球)
我的方法的问题是它非常慢(使用低精度阈值进行5000次查询约10秒。
我正在寻找一种更好的方法来实现我想要的,或者建议使我的代码更有效率。我唯一的限制是它必须用python编写。
import numpy as np
# Define constants
LARGE_VALUE=99999999.0
SMALL_VALUE=0.00000001
SUBSAMPLES=10.0
def closestPointOnLineSegment(a,b,c):
''' Given two points (a,b) defining a line segment and a query point (c)
return the closest point on that segment, the distance between
query and closest points, and a u value derived from the results
'''
# Check if c is same as a or b
ac=c-a
AC=np.linalg.norm(ac)
if AC==0.:
return c,0.,0.
bc=c-b
BC=np.linalg.norm(bc)
if BC==0.:
return c,0.,1.
# See if segment length is 0
ab=b-a
AB=np.linalg.norm(ab)
if AB == 0.:
return a,0.,0.
# Normalize segment and do edge tests
ab=ab/AB
test=np.dot(ac,ab)
if test < 0.:
return a,AC,0.
elif test > AB:
return b,BC,1.
# Return closest xyz on segment, distance, and u value
p=(test*ab)+a
return p,np.linalg.norm(c-p),(test/AB)
def surfaceWalk(e0,e1,p,v0=0.,v1=1.):
''' Walk on the surface along 2 edges, for each sample segment
look for closest point, recurse until the both sampled edges
are smaller than SMALL_VALUE
'''
edge0=(e1[0]-e0[0])
edge1=(e1[1]-e0[1])
len0=np.linalg.norm(edge0*(v1-v0))
len1=np.linalg.norm(edge1*(v1-v0))
vMin=v0
vMax=v1
closest_d=0.
closest_u=0.
closest_v=0.
ii=0.
dist=LARGE_VALUE
for i in range(int(SUBSAMPLES)+1):
v=v0+((v1-v0)*(i/SUBSAMPLES))
a=(edge0*v)+e0[0]
b=(edge1*v)+e0[1]
closest_p,closest_d,closest_u=closestPointOnLineSegment(a,b,p)
if closest_d < dist:
dist=closest_d
closest_v=v
ii=i
# If both edge lengths <= SMALL_VALUE, we're within our precision treshold so return results
if len0 <= SMALL_VALUE and len1 <= SMALL_VALUE:
return closest_p,closest_d,closest_u,closest_v
# Threshold hasn't been met, set v0 anf v1 limits to either side of closest_v and keep recursing
vMin=v0+((v1-v0)*(np.clip((ii-1),0.,SUBSAMPLES)/SUBSAMPLES))
vMax=v0+((v1-v0)*(np.clip((ii+1),0.,SUBSAMPLES)/SUBSAMPLES))
return surfaceWalk(e0,e1,p,vMin,vMax)
def closestPointToPlane(p0,p1,p2,p3,p,debug=True):
''' Given four points defining a quad surface (p0,p1,p2,3) and
a query point p. Find the closest edge and begin walking
across one end to the next until we find the closest point
'''
# Find the closest edge, we'll use that edge to start our walk
c,d,u,v=surfaceWalk([p0,p1],[p3,p2],p)
if debug:
print 'Closest Point: %s'%c
print 'Distance to Point: %s'%d
print 'U Coord: %s'%u
print 'V Coord: %s'%v
return c,d,u,v
p0 = np.array([1.15, 0.62, -1.01])
p1 = np.array([1.74, 0.86, -0.88])
p2 = np.array([1.79, 0.40, -1.46])
p3 = np.array([0.91, 0.79, -1.84])
p = np.array([1.17, 0.94, -1.52])
closestPointToPlane(p0,p1,p2,p3,p)
Closest Point: [ 1.11588876 0.70474519 -1.52660706]
Distance to Point: 0.241488104197
U Coord: 0.164463481066
V Coord: 0.681959858995
答案 0 :(得分:5)
如果您的表面看起来像双曲抛物面,则可以将其上的点s
参数化为:
s = p0 + u * (p1 - p0) + v * (p3 - p0) + u * v * (p2 - p3 - p1 + p0)
以这种方式做事,行p0p3
包含等式u = 0
,p1p2
为u = 1
,p0p1
为v = 0
且{{1是p2p3
。我无法找到一种方法来得出最接近点v = 1
的分析表达式,但是p
可以为你做数字工作:
scipy.optimize
import numpy as np
from scipy.optimize import minimize
p0 = np.array([1.15, 0.62, -1.01])
p1 = np.array([1.74, 0.86, -0.88])
p2 = np.array([1.79, 0.40, -1.46])
p3 = np.array([0.91, 0.79, -1.84])
p = np.array([1.17, 0.94, -1.52])
def fun(x, p0, p1, p2, p3, p):
u, v = x
s = u*(p1-p0) + v*(p3-p0) + u*v*(p2-p3-p1+p0) + p0
return np.linalg.norm(p - s)
>>> minimize(fun, (0.5, 0.5), (p0, p1, p2, p3, p))
status: 0
success: True
njev: 9
nfev: 36
fun: 0.24148810420527048
x: array([ 0.16446403, 0.68196253])
message: 'Optimization terminated successfully.'
hess: array([[ 0.38032445, 0.15919791],
[ 0.15919791, 0.44908365]])
jac: array([ -1.27032399e-06, 6.74091280e-06])
的返回是一个对象,您可以通过其属性访问值:
minimize
关于如何在没有scipy的情况下寻找解决方案的一些指示...如上所述参数化的点>>> res = minimize(fun, (0.5, 0.5), (p0, p1, p2, p3, p))
>>> res.x # u and v coordinates of the nearest point
array([ 0.16446403, 0.68196253])
>>> res.fun # minimum distance
0.24148810420527048
的向量与通用点s
是p
。要找出最接近的点,您可以采用两种不同的方式来得到相同的结果:
p-s
,取其衍生物w.r.t. (p-s)**2
和u
并将它们等同为零。v
处的hypar相切的两个向量,可以找到s
和ds/du
,并强制其ds/dv
的内积为零。< / LI>
醇>
如果你解决这些问题,你最终会得到两个方程式,这些方程需要大量的操作才能达到p-s
或u
的三度或四度方程式,所以没有确切的分析解决方案,尽管你只能通过numpy以数字方式解决这个问题。一个更简单的选择是计算出这些方程式,直到得到这两个方程,其中v
,a = p1-p0
,b = p3-p0
,c = p2-p3-p1+p0
,s_ = s-p0
:
p_ = p-p0
你不能轻易地为此提出一个分析解决方案,但你可以希望,如果你使用这两个关系迭代一个试验解决方案,它将会收敛。对于您的测试用例,它确实有效:
u = (p_ - v*b)*(a + v*c) / (a + v*c)**2
v = (p_ - u*a)*(b + u*c) / (b + u*c)**2
我不认为这可以保证收敛,但对于这种特殊情况,它似乎工作得很好,只需要15次迭代才能达到要求的容差。