大家好。我正在使用AMP C ++进行一些体积计算。
我有数百万个四面体,其中一个点位于(0,0,0)。所以我可以用一种简单的方式得到四面体的体积:
sum += triangle.x1 * triangle.y2 * triangle.z3 + \
triangle.y1 * triangle.z2 * triangle.x3 + \
triangle.x2 * triangle.y3 * triangle.z1 - \
triangle.x3 * triangle.y2 * triangle.z1 - \
triangle.x2 * triangle.y1 * triangle.z3 - \
triangle.y3 * triangle.z2 * triangle.x1;
所以,我想通过使用AMP C ++来加速我的计算。
这是代码。
typedef struct
{
double x1;
double y1;
double z1;
double x2;
double y2;
double z2;
double x3;
double y3;
double z3;
} Triangle;
主要功能是:
accelerator my_accelerator(accelerator::default_accelerator);
accelerator_view acc_view = my_accelerator.get_default_view();
const int BLOCK_SIZE = 64;
int outputSize = int(numTriangles / BLOCK_SIZE);
int dimA = int(numTriangles / BLOCK_SIZE) * BLOCK_SIZE;
std::cout<<dimA<<std::endl;
//copy triangles from host to device
array<Triangle,1> triangle(numTriangles);
copy(vTriangle.begin(),vTriangle.end(), triangle);
//Volume
std::vector<double> volumeCPP;
for (int i=0; i < outputSize; i++)
{
volumeCPP.push_back(double(0));
}
array_view<double,1> volume(outputSize,volumeCPP);
volume.discard_data();
clock_t start,finish;
start = clock();
parallel_for_each(
volume.extent.tile<1>(),
[=, &triangle](tiled_index<1> t_idx) restrict(amp)
{
double sum = 0.0f;
tile_static Triangle tile_triangle[4];
tile_triangle[t_idx.local[0]] = triangle[t_idx.global];
if (t_idx.local[0] == 0)
{
for (int idx=0; idx < BLOCK_SIZE; idx++){
sum += tile_triangle[idx].x1 * tile_triangle[idx].y2 * tile_triangle[idx].z3 + tile_triangle[idx].y1 * tile_triangle[idx].z2 * tile_triangle[idx].x3 + tile_triangle[idx].x2 * tile_triangle[idx].y3 * tile_triangle[idx].z1 - tile_triangle[idx].x3 * tile_triangle[idx].y2 * tile_triangle[idx].z1 - tile_triangle[idx].x2 * tile_triangle[idx].y1 * tile_triangle[idx].z3 - tile_triangle[idx].y3 * tile_triangle[idx].z2 * tile_triangle[idx].x1;
//t_idx.barrier.wait();
}
//t_idx.barrier.wait();
}
volume[t_idx.global] = sum;
}
);
acc_view.wait();
finish = clock();
copy(volume, volumeCPP.begin());
所以,每项工作都已失效。但有趣的是。它的成本高于CPU(单核)代码。
CPU上的C ++(单核)花费0.085秒来完成1024 * 1024 * 2三角形计算。 但AMP C ++代码的成本为0.530秒。比c ++代码更多。
在互联网上搜索后,有一个提示:如果我们首先预热设备,我们可以在计算中获得“实际”时间成本。
所以我首先计算128个三角形来预热设备(成本约为0.2秒),然后通过计算1024 * 1024 * 2个三角形来获得音量。它变得更快(成本约为0.091秒),但仍然比CPU(单核)代码慢。
我想知道为什么以及任何可以帮助我加快计算的人。
非常感谢。
答案 0 :(得分:2)
首先,下面是我认为稍微更好的实现和一些评论。你的代码正在做一些可以避免的事情。
然而,你在这里真正做的是减少。这是一项经过深入研究和优化的算法。在AMP Algorithms Codeplex site上有一个C ++ AMP实现它实现为STL样式的算法。在得出结论C ++ AMP不能满足您的需求之前,我会尝试使用这个reduce实现,因为这样做很简单,可能会给你更好的性能。我很想知道你是怎么过的。
AMP Book Codeplex site包含一个用于计时C ++ AMP内核的辅助类。随书还讨论了实施减少问题。它有一整章。
void Foo()
{
const int numTriangles = 128;
std::vector<Triangle> vTriangle;
accelerator my_accelerator(accelerator::default_accelerator);
accelerator_view acc_view = my_accelerator.get_default_view();
const int BLOCK_SIZE = 64;
int outputSize = int(numTriangles / BLOCK_SIZE);
const int dimA = numTriangles;
std::cout<<dimA<<std::endl;
//copy triangles from host to device
// Use and array_view to automatically sync your data.
// You can use acc_view.flush() to make sure that copy is complete
// when you are running your timing code. Make this const so that AMP does
// not copy your input data back to the CPU.
array_view<const Triangle, 1> triangle(vTriangle.size(), vTriangle.data());
//Volume
// Don't push_back this causes (re)allocation as the vector grows.
// Set size and fill at the same time.
std::vector<double> volumeCPP(outputSize, 0.0);
array_view<double, 1> volume(outputSize, volumeCPP);
volume.discard_data();
// I would use the timing code on CodePlex.
// It will be more accurate than this.
clock_t start, finish;
start = clock();
parallel_for_each(
// Not sure a tile size of 1 will be handled that
// well by the runtime in terms of perf. I see why you
// are doing it to get tile_static. You might be better off having larger tiles.
volume.extent.tile<1>(),
[=](tiled_index<1> t_idx) restrict(amp)
{
double sum = 0.0f;
for (int idx = 0; idx < BLOCK_SIZE; idx++)
{
// Loading the single triangle into tiled memory is a good idea because
// elements are read more than once.
tile_static Triangle tile_triangle;
tile_triangle = triangle[t_idx.global * BLOCK_SIZE + idx];
sum += tile_triangle.x1 * tile_triangle.y2 * tile_triangle.z3 +
tile_triangle.y1 * tile_triangle.z2 * tile_triangle.x3 +
tile_triangle.x2 * tile_triangle.y3 * tile_triangle.z1 -
tile_triangle.x3 * tile_triangle.y2 * tile_triangle.z1 -
tile_triangle.x2 * tile_triangle.y1 * tile_triangle.z3 -
tile_triangle.y3 * tile_triangle.z2 * tile_triangle.x1;
}
volume[t_idx.global] = sum;
}
);
// Force data copy back to CPU.
volume.synchronize();
double sum = std::accumulate(begin(volumeCPP), end(volumeCPP), 0.0);
}
这是使用AMP算法库使用map / reduce模式实现问题解决方案的另一个示例。
std::vector<Triangle> triangles_cpu(1000);
array_view<const Triangle, 1> triangles_gpu(triangles_cpu.size(), triangles_cpu.data());
concurrency::array<double, 1> volumes_gpu(triangles_cpu.size());
array_view<double, 1> volumes_gpuvw(volumes_gpu);
amp_stl_algorithms::transform(begin(triangles_gpu), end(triangles_gpu), begin(volumes_gpuvw),
[=](const triangle& t) restrict(amp)
{
return t.x1 * (t.y2 * t.z3 - t.y3 * t.z2)
+ t.y1 * (t.z2 * t.x3 - t.x2 * t.z3)
+ t.z1 * (t.x2 * t.y3 - t.x3 * t.y2);
});
double sum = amp_stl_algorithms::reduce(begin(volumes_gpuvw), end(volumes_gpuvw), 0.0);
答案 1 :(得分:0)
你应该能够通过分解来加快速度。
请注意您的四面体体积公式:
+ x1 * y2 * z3
+ y1 * z2 * x3
+ x2 * y3 * z1
- x3 * y2 * z1
- x2 * y1 * z3
- y3 * z2 * x1
相当于:
+ x1 * (y2 * z3 - y3 * z2)
+ y1 * (z2 * x3 - x2 * z3)
+ z1 * (x2 * y3 - x3 * y2)
原始公式有12次乘法,等效公式有9次乘法(减少25%)。很难说它会有多大的改善,但如果它给你20%的话,我也不会感到惊讶。