subset sum problem以NP完全而闻名,但有一些技巧可以很快解决问题的版本。
通常的动态编程算法需要随目标总和增长的空间。我的问题是:我们可以减少这个空间要求吗?
我正在尝试使用适度数量的元素来解决子集求和问题,但是目标总和非常大。对于指数时间算法(和shortcut method),元素的数量太大,并且目标总和对于通常的动态编程方法来说太大了。
考虑这个解决问题的玩具问题。给定集A = [2, 3, 6, 8]
找到总和为target = 11
的子集数。枚举所有子集我们看到答案是2:(3, 8)
和(2, 3, 6)
。
动态编程解决方案当然会给出相同的结果 - ways[11]
返回2
:
def subset_sum(A, target):
ways = [0] * (target + 1)
ways[0] = 1
ways_next = ways[:]
for x in A:
for j in range(x, target + 1):
ways_next[j] += ways[j - x]
ways = ways_next[:]
return ways[target]
现在考虑定位target = 1100
集合A = [200, 300, 600, 800]
。显然,仍然有两种解决方案:(300, 800)
和(200, 300, 600)
。但是,ways
数组增长了100倍。
填写动态编程存储阵列时是否可以跳过某些权重?对于我的示例问题,我可以计算输入集的最大公分母,然后通过该常量减少所有项目,但这对我的实际应用程序不起作用。
This SO question是相关的,但这些答案并没有使用我想到的方法。 Akshay 在this page上发表的第二条评论说:
...在n非常小(例如6)并且总和非常大的情况下 (例如,100万)然后空间复杂性将太大。避免 空间复杂度大,可以使用HASHTABLES。
这似乎更接近我正在寻找的东西,但我似乎无法实际实现这个想法。这真的有可能吗?
编辑添加:要解决的问题的较小示例。有一个解决方案。
target = 5213096522073683233230240000
A = [2316931787588303659213440000,
1303274130518420808307560000,
834095443531789317316838400,
579232946897075914803360000,
425558899761116998631040000,
325818532629605202076890000,
257436865287589295468160000,
208523860882947329329209600,
172333769324749858949760000,
144808236724268978700840000,
123386899930738064691840000,
106389724940279249657760000,
92677271503532146368537600,
81454633157401300519222500,
72153585080604612224640000,
64359216321897323867040000,
57762842349846905631360000,
52130965220736832332302400,
47284322195679666514560000,
43083442331187464737440000,
39418499221729173786240000,
36202059181067244675210000,
33363817741271572692673536,
30846724982684516172960000,
28604096143065477274240000,
26597431235069812414440000,
24794751591313594450560000,
23169317875883036592134400,
21698632766175580575360000,
20363658289350325129805625,
19148196591638873216640000,
18038396270151153056160000,
17022355990444679945241600]
一个真正的问题是:
target = 262988806539946324131984661067039976436265064677212251086885351040000
A = [116883914017753921836437627140906656193895584300983222705282378240000,
65747201634986581032996165266759994109066266169303062771721337760000,
42078209046391411861117545770726396229802410348353960173901656166400,
29220978504438480459109406785226664048473896075245805676320594560000,
21468474003260924418937523352411426647858372626711204170357987840000,
16436800408746645258249041316689998527266566542325765692930334440000,
12987101557528213537381958571211850688210620477887024745031375360000,
10519552261597852965279386442681599057450602587088490043475414041600,
8693844844295746252297013588993057072273225278585528961549928960000,
7305244626109620114777351696306666012118474018811451419080148640000,
6224587137040149683597270084426981690799173128454727836375984640000,
5367118500815231104734380838102856661964593156677801042589496960000,
4675356560710156873457505085636266247755823372039328908211295129600,
4109200102186661314562260329172499631816641635581441423232583610000,
3639983481521748430892521260443459881470796742937193786669693440000,
3246775389382053384345489642802962672052655119471756186257843840000,
2914003396564502206448583502127866774917064428556368433095682560000,
2629888065399463241319846610670399764362650646772122510868853510400,
2385386000362324935437502594712380738650930291856800463373109760000,
2173461211073936563074253397248264268068306319646382240387482240000,
1988573206351200938616141104476672789688204647842814753019927040000,
1826311156527405028694337924076666503029618504702862854770037160000,
1683128361855656474444701830829055849192096413934158406956066246656,
1556146784260037420899317521106745422699793282113681959093996160000,
1443011284169801504153550952356872298690068941987447193892375040000,
1341779625203807776183595209525714165491148289169450260647374240000,
1250838556670374906691960338012080744048823137584838292922165760000,
1168839140177539218364376271409066561938955843009832227052823782400,
1094646437211014876720019400903392201607763016346356924399106560000,
1027300025546665328640565082293124907954160408895360355808145902500,
965982760477305139144112620999228563585913919842836551283325440000,
909995870380437107723130315110864970367699185734298446667423360000,
858738960130436976757500934096457065914334905068448166814319513600,
811693847345513346086372410700740668013163779867939046564460960000,
768411414287644482489363509326632509674989232073666182868912640000,
728500849141125551612145875531966693729266107139092108273920640000,
691620793004461075955252231602997965644352569828303092930664960000,
657472016349865810329961652667599941090662661693030627717213377600,
625791330255672395317036671188673352614551016483550865168079360000,
596346500090581233859375648678095184662732572964200115843277440000,
568931977371436071675467087219123799753953628290345594563299840000,
543365302768484140768563349312066067017076579911595560096870560000,
519484062301128541495278342848474027528424819115480989801255014400,
497143301587800234654035276119168197422051161960703688254981760000,
476213321032044045508347054897310957784092466595223632570186240000,
456577789131851257173584481019166625757404626175715713692509290000,
438132122515529069774235170457376054037925971973698044293020160000,
420782090463914118611175457707263962298024103483539601739016561664,
404442609057972047876946806715939986830088526993021531852188160000,
389036696065009355224829380276686355674948320528420489773499040000,
374494562534633427030238036407319297168052779889230688624970240000,
360752821042450376038387738089218074672517235496861798473093760000,
347753793771829850091880543559722282890929011143421158461997158400,
335444906300951944045898802381428541372787072292362565161843560000,
323778155173833578494287055791985197213007158728485381455075840000,
312709639167593726672990084503020186012205784396209573230541440000,
302199145693704480473409550206308504954053507241841138853071360000,
292209785044384804591094067852266640484738960752458056763205945600,
282707666261699891568916593460940582033071824431295083135592960000,
273661609302753719180004850225848050401940754086589231099776640000,
265042888929147215048611399412486748738992254650755607041456640000,
256825006386666332160141270573281226988540102223840088952036475625,
248983485481605987343890803377079267631966925138189113455039385600,
241495690119326284786028155249807140896478479960709137820831360000,
234340660761814501342824380545368657996226388663143017230461440000,
227498967595109276930782578777716242591924796433574611666855840000,
220952578483466770957349011608519198854244960871423861446658560000,
214684740032609244189375233524114266478583726267112041703579878400,
208679870295533683104133831435857945991878646837700655494453760000,
202923461836378336521593102675185167003290944966984761641115240000,
197401994025105141026072179446079922264038329650750423033879040000,
192102853571911120622340877331658127418747308018416545717228160000,
187014262428406274938300203425450649910232934881573156328451805184,
182125212285281387903036468882991673432316526784773027068480160000,
177425404985627474536673746714144021883127046501745489011223040000,
172905198251115268988813057900749491411088142457075773232666240000,
168555556186474170249629649778586749838977769381324948621621760000,
164368004087466452582490413166899985272665665423257656929303344400]
答案 0 :(得分:5)
在您链接的特定评论中,建议使用散列表仅存储实际作为某个子集的总和而出现的值。在最坏的情况下,这是元素数量的指数,所以它基本上等同于你已经提到并且排除的蛮力方法。
通常,问题有两个参数 - 集合中的元素数量和目标总和的大小。朴素的蛮力在第一个是指数的,而标准的动态编程解在第二个是指数的。当其中一个参数很小时,这种方法很有效,但是您已经指出这两个参数对于指数解决方案来说太大了。因此,你会遇到问题的“困难”一般情况。
大多数NP-Complete问题都有一些基本的图形,无论是隐式的还是显式的。使用图分区和DP,它可以在图的树宽度中以指数方式求解,但只有图中树大小的多项式保持不变。当然,如果无法访问您的数据,就无法说出底层图形的外观,或者它是否属于具有有界树宽度的图形类别之一,因此可以有效地解决。
编辑:我刚刚写了下面的代码,通过减少mod的小数字来显示我的意思。以下代码在不到一秒的时间内解决了您的第一个问题,但它不适用于较大的问题(尽管它确实将其减少到n=57, log(t)=68
)。
target = 5213096522073683233230240000
A = [2316931787588303659213440000,
1303274130518420808307560000,
834095443531789317316838400,
579232946897075914803360000,
425558899761116998631040000,
325818532629605202076890000,
257436865287589295468160000,
208523860882947329329209600,
172333769324749858949760000,
144808236724268978700840000,
123386899930738064691840000,
106389724940279249657760000,
92677271503532146368537600,
81454633157401300519222500,
72153585080604612224640000,
64359216321897323867040000,
57762842349846905631360000,
52130965220736832332302400,
47284322195679666514560000,
43083442331187464737440000,
39418499221729173786240000,
36202059181067244675210000,
33363817741271572692673536,
30846724982684516172960000,
28604096143065477274240000,
26597431235069812414440000,
24794751591313594450560000,
23169317875883036592134400,
21698632766175580575360000,
20363658289350325129805625,
19148196591638873216640000,
18038396270151153056160000,
17022355990444679945241600]
import itertools, time
from fractions import gcd
def gcd_r(seq):
return reduce(gcd, seq)
def miniSolve(t, vals):
vals = [x for x in vals if x and x <= t]
for k in range(len(vals)):
for sub in itertools.combinations(vals, k):
if sum(sub) == t:
return sub
return None
def tryMod(n, state, answer):
t, vals, mult = state
mods = [x%n for x in vals if x%n]
if (t%n or mods) and sum(mods) < n:
print 'Filtering with', n
print t.bit_length(), len(vals)
else:
return state
newvals = list(vals)
tmod = t%n
if not tmod:
for x in vals:
if x%n:
newvals.remove(x)
else:
if len(set(mods)) != len(mods):
#don't want to deal with the complexity of multisets for now
print 'skipping', n
else:
mini = miniSolve(tmod, mods)
if mini is None:
return None
mini = set(mini)
for x in vals:
mod = x%n
if mod:
if mod in mini:
t -= x
answer.add(x*mult)
newvals.remove(x)
g = gcd_r(newvals + [t])
t = t//g
newvals = [x//g for x in newvals]
mult *= g
return (t, newvals, mult)
def solve(t, vals):
answer = set()
mult = 1
for d in itertools.count(2):
if not t:
return answer
elif not vals or t < min(vals):
return None #no solution'
res = tryMod(d, (t, vals, mult), answer)
if res is None:
return None
t, vals, mult = res
if len(vals) < 23:
break
if (d % 10000) == 0:
print 'd', d
#don't want to deal with the complexity of multisets for now
assert(len(set(vals)) == len(vals))
rest = miniSolve(t, vals)
if rest is None:
return None
answer.update(x*mult for x in rest)
return answer
start_t = time.time()
answer = solve(target, A)
assert(answer <= set(A) and sum(answer) == target)
print answer