我正在尝试在2D方格上实现A *算法。然而,它几乎从未找到最佳路径,我只是看不出原因。即使对于python,代码也很慢。
我已经尝试过任何事情,我没有想法。
这是我到目前为止所做的:
文件astar.py:
end = None
NLUT = [ (1,0) , (0,1) , (-1,0) , (0,-1) ]
class Tile:
def __init__(self,x,y,g=0,parent=None):
self.x = x
self.y = y
self.g = g
self.parent = parent
def __eq__(self,other):
if other == None:
return False
return ( (self.x == other.x) and (self.y == other.y))
def __ne__(self,other):
return not self.__eq__(other)
def __hash__(self):
return hash((self.x,self.y))
def __str__(self):
if self.parent == None:
sss = ""
else:
sss = " <- "+str(self.parent.coords())
return "<"+str(self.x)+"."+str(self.y)+"g"+str(self.g)+">"+sss
def __repr__(self):
return "<"+str(self.x)+"."+str(self.y)+">"
def coords(self):
return (self.x,self.y)
def f(self):
return self.g + self.h()
def h(self):
global end
return ((abs(self.x-end[0]) + abs(self.y-end[1])))
def nbd(self):
global NLUT
return [ Tile(self.x + n[0], self.y + n[1], self.g + 1, self) for n in NLUT]
def pathfind(mapfunction,start,endp):
global end
end = endp
DEBUG = False
# DEBUG = True
def log(st):
if DEBUG:
print(st)
startile = Tile(start[0],start[1],0)
endtile = Tile(end[0],end[1])
path = []
# init openSet with the starting tile
openSet = set([startile])
closedSet = set()
stepcount = 0
#the loop, as long as openSet is not empty:
while len(openSet)>0:
log(str(stepcount)+"-"+str(openSet))
stepcount += 1
fcur = float("inf")
#find lowest f-count tile in the open set
for o in openSet:
if o.f() < fcur:
fcur = o.f()
current = o
log("current: "+str(current))
#move the current tile to the closed set
openSet.remove(o)
closedSet.add(o)
#find the von neumann neighbourhood
nbd = o.nbd()
log("nbd: "+str(nbd))
#work on the neighbours
for n in nbd:
log("processing "+str(n))
if mapfunction(n.x,n.y) != 0: #if it's blocked, ignore
log("it was blocked.")
continue
elif n in closedSet: #if it's in the closed set, ignore
log("it was in the closed set.")
continue
elif n in openSet: #if it's in the open set...
log("it's in the open set...")
for e in openSet:
if n==e: #find the old copy of n in the open set
if n.g < e.g: #if it's a better path, substitute
log("SUBSTITUTION")
openSet.remove(e)
openSet.add(n)
else:
log("old path was better.")
break #no need to go on...
else: #if it's not in the open set, add it
log("not in the open set, adding...")
openSet.add(n)
if endtile in closedSet: #if we're done
#find copy of endtile in closedSet
for e in closedSet:
if e == endtile:
rec = e
while (not rec == None) and rec != startile: #reconstruct the path
path.append(rec.coords())
rec = rec.parent
path.append(startile.coords())
return path
#if openset is empty, no path was found. :(
return -1
这是一个小小的演示程序,astardemo.py:
import astar
from random import *
mapp = [[randint(0,10)//10 for _ in range(0,50)] for _ in range(0,50)]
def isblocked(x,y):
global mapp
if not (x in range(0,50) and y in range(0,50)):
return 1
return (mapp[x][y] != 0)
start = (randint(0,49),randint(0,49))
end = (randint(0,49),randint(0,49))
mapp[start[0]][start[1]] = 0
mapp[end[0]][end[1]] = 0
p = astar.pathfind(isblocked,start,end)
print p
l = ""
for i in range(0,50):
for j in range(0,50):
if (i,j) in p:
if mapp[i][j] > 0:
l+="E"
else:
l+=str(p.index((i,j))%10)
elif mapp[i][j] > 0:
l+="#"
else:
l+=" "
l+="\n"
print l
答案 0 :(得分:0)
for o in openSet:
if o.f() < fcur:
fcur = o.f()
current = o
log("current: "+str(current))
#move the current tile to the closed set
openSet.remove(o)
closedSet.add(o)
#find the von neumann neighbourhood
nbd = o.nbd()
在此代码中,您使用o
,但是您在循环之外,因此它始终是循环中的最后一个值,您是否意味着使用current
?
for o in openSet:
if o.f() < fcur:
fcur = o.f()
current = o
log("current: "+str(current))
#move the current tile to the closed set
openSet.remove(current)
closedSet.add(current)
#find the von neumann neighbourhood
nbd = current.nbd()