我发现了一篇文章:
Solving the 0-1 knapsack problem using continuation-passing style with memoization in F#
关于在F#中实现的背包问题。当我学习这门语言时,我发现这非常有趣,并试图对此进行一些研究。这是我制作的代码:
open System
open System.IO
open System.Collections.Generic
let parseToTuple (line : string) =
let parsedLine = line.Split(' ') |> Array.filter(not << String.IsNullOrWhiteSpace) |> Array.map Int32.Parse
(parsedLine.[0], parsedLine.[1])
let memoize f =
let cache = Dictionary<_, _>()
fun x ->
if cache.ContainsKey(x)
then cache.[x]
else
let res = f x
cache.[x] <- res
res
type Item =
{
Value : int
Size : int
}
type ContinuationBuilder() =
member b.Bind(x, f) = fun k -> x (fun x -> f x k)
member b.Return x = fun k -> k x
member b.ReturnFrom x = x
let cont = ContinuationBuilder()
let set1 =
[
(4, 11)
(8, 4)
(10, 5)
(15, 8)
(4, 3)
]
let set2 =
[
(50, 341045); (1906, 4912); (41516, 99732); (23527, 56554); (559, 1818); (45136, 108372); (2625, 6750); (492, 1484)
(1086, 3072); (5516, 13532); (4875, 12050); (7570, 18440); (4436, 10972); (620, 1940); (50897, 122094); (2129, 5558)
(4265, 10630); (706, 2112); (2721, 6942); (16494, 39888); (29688, 71276); (3383, 8466); (2181, 5662); (96601, 231302)
(1795, 4690); (7512, 18324); (1242, 3384); (2889, 7278); (2133, 5566); (103, 706); (4446, 10992); (11326, 27552)
(3024, 7548); (217, 934); (13269, 32038); (281, 1062); (77174, 184848); (952, 2604); (15572, 37644); (566, 1832)
(4103, 10306); (313, 1126); (14393, 34886); (1313, 3526); (348, 1196); (419, 1338); (246, 992); (445, 1390)
(23552, 56804); (23552, 56804); (67, 634)
]
[<EntryPoint>]
let main args =
// prepare list of items from a file args.[0]
let header, items = set1
|> function
| h::t -> h, t
| _ -> raise (Exception("Wrong data format"))
let N, K = header
printfn "N = %d, K = %d" N K
let items = List.map (fun x -> {Value = fst x ; Size = snd x}) items |> Array.ofList
let rec combinations =
let innerSolver key =
cont
{
match key with
| (i, k) when i = 0 || k = 0 -> return 0
| (i, k) when items.[i-1].Size > k -> return! combinations (i-1, k)
| (i, k) -> let item = items.[i-1]
let! v1 = combinations (i-1, k)
let! beforeItem = combinations (i-1, k-item.Size)
let v2 = beforeItem + item.Value
return max v1 v2
}
memoize innerSolver
let res = combinations (N, K) id
printfn "%d" res
0
然而,这个实现的问题在于它的速度很慢(实际上我无法解决50个项目和容量大约300000的问题,这可以通过我在C#中的天真实现在不到1秒内解决)。 / p>
你能否告诉我,我是否在某个地方犯了错误?或者也许实现是正确的,这只是解决这个问题的低效方法。
答案 0 :(得分:7)
当您天真地应用这样的通用记事本并使用延续传递时,记忆缓存中的值为延续,而不是常规的“最终”结果。因此,当你获得缓存命中时,你没有得到最终结果,你得到一些函数,它承诺在你调用它时计算结果。这个调用可能很昂贵,可能会调用各种其他延续,最终可能会再次点击memoization缓存等等。
有效地记忆延续传递函数,使得a)缓存完全生效和b)函数仍然是尾递归是非常困难的。阅读this讨论,并在您完全理解这一点后再回来。 ; - )
您链接的博客文章的作者正在使用更复杂,更不通用的记事本,该记事本专门针对该问题。不可否认,我还没有完全理解它(博客上的代码不完整/破碎,很难尝试),但我认为它的要点是它在缓存最终整数之前“强制”延续链结果
为了说明这一点,这里是您的代码的快速重构,它是完全独立的并且可以追溯相关信息:
open System
open System.Collections.Generic
let mutable cacheHits = 0
let mutable cacheMisses = 0
let memoize f =
let cache = Dictionary<_, _>()
fun x ->
match cache.TryGetValue(x) with
| (true, v) ->
cacheHits <- cacheHits + 1
printfn "Hit for %A - Result is %A" x v
v
| _ ->
cacheMisses <- cacheMisses + 1
printfn "Miss for %A" x
let res = f x
cache.[x] <- res
res
type Item = { Value : int; Size : int }
type ContinuationBuilder() =
member b.Bind(x, f) = fun k -> x (fun x -> f x k)
member b.Return x = fun k -> k x
member b.ReturnFrom x = x
let cont = ContinuationBuilder()
let genItems n =
[| for i = 1 to n do
let size = i % 5
let value = (size * i)
yield { Value = value; Size = size }
|]
let N, K = (5, 100)
printfn "N = %d, K = %d" N K
let items = genItems N
let rec combinations_cont =
memoize (
fun key ->
cont {
match key with
| (0, _) | (_, 0) -> return 0
| (i, k) when items.[i-1].Size > k -> return! combinations_cont (i - 1, k)
| (i, k) -> let item = items.[i-1]
let! v1 = combinations_cont (i-1, k)
let! beforeItem = combinations_cont (i-1, k - item.Size)
let v2 = beforeItem + item.Value
return max v1 v2
}
)
let res = combinations_cont (N, K) id
printfn "Answer: %d" res
printfn "Memo hits: %d" cacheHits
printfn "Memo misses: %d" cacheMisses
printfn ""
let rec combinations_plain =
memoize (
fun key ->
match key with
| (i, k) when i = 0 || k = 0 -> 0
| (i, k) when items.[i-1].Size > k -> combinations_plain (i-1, k)
| (i, k) -> let item = items.[i-1]
let v1 = combinations_plain (i-1, k)
let beforeItem = combinations_plain (i-1, k-item.Size)
let v2 = beforeItem + item.Value
max v1 v2
)
cacheHits <- 0
cacheMisses <- 0
let res2 = combinations_plain (N, K)
printfn "Answer: %d" res2
printfn "Memo hits: %d" cacheHits
printfn "Memo misses: %d" cacheMisses
正如您所看到的,CPS版本是缓存延续(不是整数),并且在调用延续时会有很多额外的活动进行到底。 p>
如果将问题大小提升到let (N, K) = (20, 100)
(并删除记事本中的printfn
语句),您将看到CPS版本最终执行超过100万次缓存查找,与普通版本相比只做几百个。
答案 1 :(得分:6)
在FSI中运行此代码:
open System
open System.Diagnostics
open System.Collections.Generic
let time f =
System.GC.Collect()
let sw = Stopwatch.StartNew()
let r = f()
sw.Stop()
printfn "Took: %f" sw.Elapsed.TotalMilliseconds
r
let mutable cacheHits = 0
let mutable cacheMisses = 0
let memoize f =
let cache = Dictionary<_, _>()
fun x ->
match cache.TryGetValue(x) with
| (true, v) ->
cacheHits <- cacheHits + 1
//printfn "Hit for %A - Result is %A" x v
v
| _ ->
cacheMisses <- cacheMisses + 1
//printfn "Miss for %A" x
let res = f x
cache.[x] <- res
res
type Item = { Value : int; Size : int }
type ContinuationBuilder() =
member b.Bind(x, f) = fun k -> x (fun x -> f x k)
member b.Return x = fun k -> k x
member b.ReturnFrom x = x
let cont = ContinuationBuilder()
let genItems n =
[| for i = 1 to n do
let size = i % 5
let value = (size * i)
yield { Value = value; Size = size }
|]
let N, K = (80, 400)
printfn "N = %d, K = %d" N K
let items = genItems N
//let rec combinations_cont =
// memoize (
// fun key ->
// cont {
// match key with
// | (0, _) | (_, 0) -> return 0
// | (i, k) when items.[i-1].Size > k -> return! combinations_cont (i - 1, k)
// | (i, k) -> let item = items.[i-1]
// let! v1 = combinations_cont (i-1, k)
// let! beforeItem = combinations_cont (i-1, k - item.Size)
// let v2 = beforeItem + item.Value
// return max v1 v2
// }
// )
//
//
//cacheHits <- 0
//cacheMisses <- 0
//let res = time(fun () -> combinations_cont (N, K) id)
//printfn "Answer: %d" res
//printfn "Memo hits: %d" cacheHits
//printfn "Memo misses: %d" cacheMisses
//printfn ""
let rec combinations_plain =
memoize (
fun key ->
match key with
| (i, k) when i = 0 || k = 0 -> 0
| (i, k) when items.[i-1].Size > k -> combinations_plain (i-1, k)
| (i, k) -> let item = items.[i-1]
let v1 = combinations_plain (i-1, k)
let beforeItem = combinations_plain (i-1, k-item.Size)
let v2 = beforeItem + item.Value
max v1 v2
)
cacheHits <- 0
cacheMisses <- 0
printfn "combinations_plain"
let res2 = time (fun () -> combinations_plain (N, K))
printfn "Answer: %d" res2
printfn "Memo hits: %d" cacheHits
printfn "Memo misses: %d" cacheMisses
printfn ""
let recursivelyMemoize f =
let cache = Dictionary<_, _>()
let rec memoizeAux x =
match cache.TryGetValue(x) with
| (true, v) ->
cacheHits <- cacheHits + 1
//printfn "Hit for %A - Result is %A" x v
v
| _ ->
cacheMisses <- cacheMisses + 1
//printfn "Miss for %A" x
let res = f memoizeAux x
cache.[x] <- res
res
memoizeAux
let combinations_plain2 =
let combinations_plain2Aux combinations_plain2Aux key =
match key with
| (i, k) when i = 0 || k = 0 -> 0
| (i, k) when items.[i-1].Size > k -> combinations_plain2Aux (i-1, k)
| (i, k) -> let item = items.[i-1]
let v1 = combinations_plain2Aux (i-1, k)
let beforeItem = combinations_plain2Aux (i-1, k-item.Size)
let v2 = beforeItem + item.Value
max v1 v2
let memoized = recursivelyMemoize combinations_plain2Aux
fun x -> memoized x
cacheHits <- 0
cacheMisses <- 0
printfn "combinations_plain2"
let res3 = time (fun () -> combinations_plain2 (N, K))
printfn "Answer: %d" res3
printfn "Memo hits: %d" cacheHits
printfn "Memo misses: %d" cacheMisses
printfn ""
let recursivelyMemoizeCont f =
let cache = Dictionary HashIdentity.Structural
let rec memoizeAux x k =
match cache.TryGetValue(x) with
| (true, v) ->
cacheHits <- cacheHits + 1
//printfn "Hit for %A - Result is %A" x v
k v
| _ ->
cacheMisses <- cacheMisses + 1
//printfn "Miss for %A" x
f memoizeAux x (fun y ->
cache.[x] <- y
k y)
memoizeAux
let combinations_cont2 =
let combinations_cont2Aux combinations_cont2Aux key =
cont {
match key with
| (0, _) | (_, 0) -> return 0
| (i, k) when items.[i-1].Size > k -> return! combinations_cont2Aux (i - 1, k)
| (i, k) -> let item = items.[i-1]
let! v1 = combinations_cont2Aux (i-1, k)
let! beforeItem = combinations_cont2Aux (i-1, k - item.Size)
let v2 = beforeItem + item.Value
return max v1 v2
}
let memoized = recursivelyMemoizeCont combinations_cont2Aux
fun x -> memoized x id
cacheHits <- 0
cacheMisses <- 0
printfn "combinations_cont2"
let res4 = time (fun () -> combinations_cont2 (N, K))
printfn "Answer: %d" res4
printfn "Memo hits: %d" cacheHits
printfn "Memo misses: %d" cacheMisses
printfn ""
我得到了这些结果:
N = 80, K = 400
combinations_plain
Took: 7.191000
Answer: 6480
Memo hits: 6231
Memo misses: 6552
combinations_plain2
Took: 6.310800
Answer: 6480
Memo hits: 6231
Memo misses: 6552
combinations_cont2
Took: 17.021200
Answer: 6480
Memo hits: 6231
Memo misses: 6552
combinations_plain
来自拉特金的回答。combinations_plain2
明确公开递归memoization步骤。combinations_cont2
将递归memoization函数调整为一个记忆延续结果的函数。combinations_cont2
通过在继续之前拦截结果,然后将其传递给实际的继续。对相同密钥的后续调用提供了一个延续,并且这个延续是我们最初截获的答案。这表明我们能够:
我希望这可以解决一些问题。对不起,我的博客代码片段不完整(我想我最近重新格式化时可能会丢失它)。