Kadane的算法(http://en.wikipedia.org/wiki/Maximum_subarray_problem)用于在一维数组中找到最大的连续子数组。
现在,如何使用它来找出具有相同最大总和的此类序列的数量?可以对算法进行哪些修改来计算这些序列。
例如:
0 0 0 1 -> (largest sum = 1); 4 sequences { (0,0,0,1), (0,0,1), (0,1) , (1) }
0 0 0 -> (largest sum = 0); 6 sequences { (0,0,0), (0,0), (0,0), (0), (0), (0) }
2 0 -2 2 -> (largest sum = 2); 4 sequences { (2), (2,0), (2,0,-2, 2), (2) }
答案 0 :(得分:2)
Kadane的算法跟踪在当前点结束的序列的最大值,以及到目前为止看到的最大值。
这是一个基于the wikipedia page的Python实现:
def kadane(A):
max_ending_here = max_so_far = 0
for x in A:
max_ending_here = max([x,0,max_ending_here+x])
max_so_far = max(max_so_far,max_ending_here)
return max_so_far
我们可以修改算法,通过添加两个变量来跟踪这些序列的数量:
Kadane的算法可以直接改变以跟踪这些变量,同时保持O(n)复杂度:
def kadane_count(A):
max_ending_here = max_so_far = 0
count_with_max_ending_here = 0 # Number of nontrivial sequences that sum to max_ending_here
count_with_max = 0
for i,x in enumerate(A):
new_max = max_ending_here+x
if new_max>=0:
if count_with_max_ending_here==0:
# Start a nontrivial sequence here
count_with_max_ending_here=1
elif max_ending_here==0:
# Can choose to carry on a nontrivial sequence, or start a new one here
count_with_max_ending_here += 1
max_ending_here = new_max
else:
count_with_max_ending_here = 0
max_ending_here = 0
if max_ending_here > max_so_far:
count_with_max = count_with_max_ending_here
max_so_far = max_ending_here
elif max_ending_here == max_so_far:
count_with_max += count_with_max_ending_here
return count_with_max
for A in [ [0,0,0,1],[0,0,0],[2,0,-2,2] ]:
print kadane(A),kadane_count(A)