我正在尝试计算两个大圆的交点(纬度和纬度,以度为单位),每个圆由圆上的两个点定义。我一直在尝试遵循概述here的方法。 但我得到的答案是不正确的,我的代码在下面是否有人知道我哪里出错?
################################################
#### Intersection of two great circles.
# Points on great circle 1.
glat1 = 54.8639587
glon1 = -8.177818
glat2 = 52.65297082
glon2 = -10.78064876
# Points on great circle 2.
cglat1 = 51.5641564
cglon1 = -9.2754284
cglat2 = 53.35422063
cglon2 = -12.5767799
# 1. Put in polar coords.
x1 = cos(glat1) * sin(glon1)
y1 = cos(glat1) * cos(glon1)
z1 = sin(glat1)
x2 = cos(glat2) * sin(glon2)
y2 = cos(glat2) * cos(glon2)
z2 = sin(glat2)
cx1 = cos(cglat1) * sin(cglon1)
cy1 = cos(cglat1) * cos(cglon1)
cz1 = sin(cglat1)
cx2 = cos(cglat2) * sin(cglon2)
cy2 = cos(cglat2) * cos(cglon2)
cz2 = sin(cglat2)
# 2. Get normal to planes containing great circles.
# It's the cross product of vector to each point from the origin.
N1 = cross([x1, y1, z1], [x2, y2, z2])
N2 = cross([cx1, cy1, cz1], [cx2, cy2, cz2])
# 3. Find line of intersection between two planes.
# It is normal to the poles of each plane.
L = cross(N1, N2)
# 4. Find intersection points.
X1 = L / abs(L)
X2 = -X1
ilat = asin(X1[2]) * 180./np.pi
ilon = atan2(X1[1], X1[0]) * 180./np.pi
我还应该提到这是在地球表面(假设一个球体)。
答案 0 :(得分:1)
上面评论中来自DSM的解决方案,你的角度是度,而sin和cos是弧度。 这一行
X1 = L / abs(L)
应该是,
X1 = L / np.sqrt(L[0]**2 + L[1]**2 + L[2]**2)
答案 1 :(得分:0)
需要做的另一项更正是在" lon"之前改变cos / sin。在x和y维度:
x = cos(lat) * cos(lon)
y = cos(lat) * sin(lon)
z = sin(lat)
这是因为从角度到球面系统的原始转换是使用极坐标/方位角球面角度完成的,它们与纬度/经度角度不同(wiki it https://en.wikipedia.org/wiki/Spherical_coordinate_system)。