我有一个大的mxn矩阵,我已经确定了线性相关的列。但是,我想知道在R中是否有一种方法可以根据线性独立列来编写线性相关列。由于它是一个大型矩阵,因此无法根据检查进行。
这是我所拥有的矩阵类型的玩具示例。
> mat <- matrix(c(1,1,0,1,0,1,1,0,0,1,1,0,1,1,0,1,0,1,0,1), byrow=TRUE, ncol=5, nrow=4)
> mat
[,1] [,2] [,3] [,4] [,5]
[1,] 1 1 0 1 0
[2,] 1 1 0 0 1
[3,] 1 0 1 1 0
[4,] 1 0 1 0 1
这里显然x3 = x1-x2,x5 = x1-x4。我想知道是否有一种自动化方法可以获得更大的矩阵。
谢谢!
答案 0 :(得分:9)
我确信有更好的方法,但我觉得要玩这个。我基本上在开始时检查输入矩阵是否是完整的列级别,以避免在满级时进行不必要的计算。之后,我从前两列开始,检查该子矩阵是否具有完整的列级别,如果是,则检查第一列,依此类推。一旦我们发现一些不是完整列级别的子矩阵,我会回归上一个子矩阵中的最后一列,它告诉我们如何构造第一列的线性组合以获得最后一列。
我的功能现在不是很干净,可以做一些额外的检查,但至少它是一个开始。
mat <- matrix(c(1,1,0,1,0,1,1,0,0,1,1,0,1,1,0,1,0,1,0,1), byrow=TRUE, ncol=5, nrow=4)
linfinder <- function(mat){
# If the matrix is full rank then we're done
if(qr(mat)$rank == ncol(mat)){
print("Matrix is of full rank")
return(invisible(seq(ncol(mat))))
}
m <- ncol(mat)
# cols keeps track of which columns are linearly independent
cols <- 1
for(i in seq(2, m)){
ids <- c(cols, i)
mymat <- mat[, ids]
if(qr(mymat)$rank != length(ids)){
# Regression the column of interest on the previous
# columns to figure out the relationship
o <- lm(mat[,i] ~ mat[,cols] + 0)
# Construct the output message
start <- paste0("Column_", i, " = ")
# Which coefs are nonzero
nz <- !(abs(coef(o)) <= .Machine$double.eps^0.5)
tmp <- paste("Column", cols[nz], sep = "_")
vals <- paste(coef(o)[nz], tmp, sep = "*", collapse = " + ")
message <- paste0(start, vals)
print(message)
}else{
# If the matrix subset was of full rank
# then the newest column in linearly independent
# so add it to the cols list
cols <- ids
}
}
return(invisible(cols))
}
linfinder(mat)
给出了
> linfinder(mat)
[1] "Column_3 = 1*Column_1 + -1*Column_2"
[1] "Column_5 = 1*Column_1 + -1*Column_4"