拓扑排序可以使用DFS(边缘反转)和使用队列来完成。 BFS也可以使用队列完成。在使用队列进行拓扑排序时,在使用BFS队列时,存储和检索元素的方式之间是否存在任何关系。澄清将有所帮助。感谢。
答案 0 :(得分:2)
不,没有任何关系。我假设你指的是来自wikipedia/Topological_sorting#Algorithms的Kahn算法,维基百科指出:
请注意,反映结果排序的非唯一性,结构S可以只是一个集合,也可以是队列或堆栈。
因此拓扑排序的“队列”实际上是“任何集合”结构,并且此集合中的排序无关紧要;它可以是任何东西。另一方面,用于BFS的队列是关于订单的;这样它就可以完成FIFO(先进先出)任务。更改此顺序将破坏BFS算法。
可能有其他基于“队列”的算法用于拓扑排序,其中结构是队列很重要。如果您询问特定的此类算法,请澄清。
编辑:感兴趣的算法被澄清为Improved algorithm section,与卡恩相同。
编辑:我根据您链接的页面中的Improved algorithm section编写了一些实现拓扑排序的代码。我使用任意的集合类型作为sort函数的参数。然后我制作了几种类型的集合,包括堆栈,队列,随机弹出集合和python集(它是一个hashset,所以订单没有保证)。
然后我制作一个图表,并在每个集合上测试排序算法。然后我使用拓扑排序维基百科上列出的定义测试每个结果:
..拓扑排序(有时缩写为topsort或toposort)或有向图的拓扑排序是其顶点的线性排序,这样,对于每个边缘uv,u在排序中位于v之前。
代码是用python编写的,如下。结果是来自here的http://ideone.com。我不知道生成随机DAG进行测试的简便方法,所以我的测试图是蹩脚的。随意评论/编辑一个好的DAG生成器。
编辑:现在我有一个不太蹩脚的生成器,但它使用networkx。函数nx_generate_random_dag
在代码中,但它在函数中导入networkx。您可以取消注释main中标记的部分以生成图形。我将生成的图形硬编码到代码中,因此我们得到了更有趣的结果。
所有这些都表明,“集合”数据结构(算法中的队列)的顺序可以是任何顺序。
from collections import deque
import random
def is_topsorted(V,E,sequence):
sequence = list(sequence)
#from wikipedia definition of top-sort
#for every edge uv, u comes before v in the ordering
for u,v in E:
ui = sequence.index(u)
vi = sequence.index(v)
if not (ui < vi):
return False
return True
#the collection_type should behave like a set:
# it must have add(), pop() and __len__() as members.
def topsort(V,E,collection_type):
#out edges
INS = {}
#in edges
OUTS = {}
for v in V:
INS[v] = set()
OUTS[v] = set()
#for each edge u,v,
for u,v in E:
#record the out-edge from u
OUTS[u].add(v)
#record the in-edge to v
INS[v].add(u)
#1. Store all vertices with indegree 0 in a queue
#We will start
topvertices = collection_type()
for v,in_vertices in INS.iteritems():
if len(in_vertices) == 0:
topvertices.add(v)
result = []
#4. Perform steps 2 and 3 while the queue is not empty.
while len(topvertices) != 0:
#2. get a vertex U and place it in the sorted sequence (array or another queue).
u = topvertices.pop()
result.append(u)
#3. For all edges (U,V) update the indegree of V,
# and put V in the queue if the updated indegree is 0.
for v in OUTS[u]:
INS[v].remove(u)
if len(INS[v]) == 0:
topvertices.add(v)
return result
class stack_collection:
def __init__(self):
self.data = list()
def add(self,v):
self.data.append(v)
def pop(self):
return self.data.pop()
def __len__(self):
return len(self.data)
class queue_collection:
def __init__(self):
self.data = deque()
def add(self,v):
self.data.append(v)
def pop(self):
return self.data.popleft()
def __len__(self):
return len(self.data)
class random_orderd_collection:
def __init__(self):
self.data = []
def add(self,v):
self.data.append(v)
def pop(self):
result = random.choice(self.data)
self.data.remove(result)
return result
def __len__(self):
return len(self.data)
"""
Poor man's graph generator.
Requires networkx.
Don't make the edge_count too high compared with the vertex count,
otherwise it will run for a long time or forever.
"""
def nx_generate_random_dag(vertex_count,edge_count):
import networkx as nx
V = range(1,vertex_count+1)
random.shuffle(V)
G = nx.DiGraph()
G.add_nodes_from(V)
while nx.number_of_edges(G) < edge_count:
u = random.choice(V)
v = random.choice(V)
if u == v:
continue
for tries in range(2):
G.add_edge(u,v)
if not nx.is_directed_acyclic_graph(G):
G.remove_edge(u,v)
u,v = v,u
V = G.nodes()
E = G.edges()
assert len(E) == edge_count
assert len(V) == vertex_count
return V,E
def main():
graphs = []
V = [1,2,3,4,5]
E = [(1,2),(1,5),(1,4),(2,4),(2,5),(3,4),(3,5)]
graphs.append((V,E))
"""
Uncomment this section if you have networkx.
This will generate 3 random graphs.
"""
"""
for i in range(3):
G = nx_generate_random_dag(30,120)
V,E = G
print 'random E:',E
graphs.append(G)
"""
#This graph was generated using nx_generate_random_dag() from above
V = range(1,31)
E = [(1, 10), (1, 11), (1, 14), (1, 17), (1, 18), (1, 21), (1, 23),
(1, 30), (2, 4), (2, 12), (2, 15), (2, 17), (2, 18), (2, 19),
(2, 25), (3, 22), (4, 5), (4, 8), (4, 22), (4, 23), (4, 26),
(5, 27), (5, 23), (6, 24), (6, 28), (6, 27), (6, 20), (6, 29),
(7, 3), (7, 19), (7, 13), (8, 24), (8, 10), (8, 3), (8, 12),
(9, 4), (9, 8), (9, 10), (9, 14), (9, 19), (9, 27), (9, 28),
(9, 29), (10, 18), (10, 5), (10, 23), (11, 27), (11, 5),
(12, 10), (13, 9), (13, 26), (13, 3), (13, 12), (13, 6), (14, 24),
(14, 28), (14, 18), (14, 20), (15, 3), (15, 12), (15, 17), (15, 19),
(15, 25), (15, 27), (16, 4), (16, 5), (16, 8), (16, 18), (16, 20), (16, 23),
(16, 26), (16, 28), (17, 4), (17, 5), (17, 8), (17, 12), (17, 22), (17, 28),
(18, 11), (18, 3), (19, 10), (19, 18), (19, 5), (19, 22), (20, 5), (20, 29),
(21, 25), (21, 12), (21, 30), (21, 17), (22, 11), (24, 3), (24, 10),
(24, 11), (24, 28), (25, 10), (25, 17), (25, 23), (25, 27), (26, 3),
(26, 18), (26, 19), (28, 26), (28, 11), (28, 23), (29, 2), (29, 4),
(29, 11), (29, 15), (29, 17), (29, 22), (29, 23), (30, 3), (30, 7),
(30, 17), (30, 20), (30, 25), (30, 26), (30, 28), (30, 29)]
graphs.append((V,E))
#add other graphs here for testing
for G in graphs:
V,E = G
#sets in python are unordered but in practice their hashes usually order integers.
top_set = topsort(V,E,set)
top_stack = topsort(V,E,stack_collection)
top_queue = topsort(V,E,queue_collection)
random_results = []
for i in range(0,10):
random_results.append(topsort(V,E,random_orderd_collection))
print
print 'V: ', V
print 'E: ', E
print 'top_set ({0}): {1}'.format(is_topsorted(V,E,top_set),top_set)
print 'top_stack ({0}): {1}'.format(is_topsorted(V,E,top_stack),top_stack)
print 'top_queue ({0}): {1}'.format(is_topsorted(V,E,top_queue),top_queue)
for random_result in random_results:
print 'random_result ({0}): {1}'.format(is_topsorted(V,E,random_result),random_result)
assert is_topsorted(V,E,random_result)
assert is_topsorted(V,E,top_set)
assert is_topsorted(V,E,top_stack)
assert is_topsorted(V,E,top_queue)
main()
答案 1 :(得分:1)
从源节点开始逐层遍历BFS使得节点按照它们到源的距离的顺序出现,这也意味着父节点出现在子节点之前,而子节点在下一级。
这看起来像我们在拓扑上所需要的,但是,请留在我身边。上一句话中的下一级别是关键,因为如果节点和它的子级在源级别上处于同一级别,则BFS在遍历它们时不强制执行任何顺序,这意味着它可以在其自身之前显示节点的子级这将直接违反拓扑排序规则,并且当我们想要拓扑排序时,排序确实很重要。
尽管BFS与拓扑排序之间似乎存在某种联系,但它仍然很弱。