我正在尝试进行声音处理项目,需要将频率放入另一个域。现在,我试图实现一个不顺利的FFT。我试图理解z
- 变换,但也没有很好。我读了一下,发现DFT更容易理解,尤其是算法。所以我使用示例对算法进行了编码,但我不知道或认为输出是正确的。 (我这里没有Matlab,也找不到任何资源来测试它),并想知道你们是否知道我是否朝着正确的方向前进。到目前为止,这是我的代码:
#include <iostream>
#include <complex>
#include <vector>
using namespace std;
const double PI = 3.141592;
vector< complex<double> > DFT(vector< complex<double> >& theData)
{
// Define the Size of the read in vector
const int S = theData.size();
// Initalise new vector with size of S
vector< complex<double> > out(S, 0);
for(unsigned i=0; (i < S); i++)
{
out[i] = complex<double>(0.0, 0.0);
for(unsigned j=0; (j < S); j++)
{
out[i] += theData[j] * polar<double>(1.0, - 2 * PI * i * j / S);
}
}
return out;
}
int main(int argc, char *argv[]) {
vector< complex<double> > numbers;
numbers.push_back(102023);
numbers.push_back(102023);
numbers.push_back(102023);
numbers.push_back(102023);
vector< complex<double> > testing = DFT(numbers);
for(unsigned i=0; (i < testing.size()); i++)
{
cout << testing[i] << endl;
}
}
输入是:
102023 102023
102023 102023
结果:
(408092, 0)
(-0.0666812, -0.0666812)
(1.30764e-07, -0.133362)
(0.200044, -0.200043)
任何帮助或建议都会很棒,我不会期待太多,但是,任何事情都会很棒。谢谢:))
答案 0 :(得分:6)
@Phorce就在这里。我不认为重新发明轮子有任何共鸣。但是,如果你想这样做,以便你理解方法和让你自己编码的乐趣,我可以提供几年前开发的FORTRAN FFT代码。当然这不是C ++,需要翻译;这不应该太困难,应该让你学到很多东西......
以下是基于Radix 4的算法;该基数-4FFT递归地将DFT划分为每四个时间样本的组的四个四分之一长度DFT。这些较短FFT的输出被重新用于计算许多输出,从而大大降低了总计算成本。基数-4抽取频率FFT将每四个输出样本分组为更短长度的DFT以节省计算。基数-4 FFT仅需要基数-2 FFT的75%的复数乘法。有关详细信息,请参阅here。
!+ FILE: RADIX4.FOR
! ===================================================================
! Discription: Radix 4 is a descreet complex Fourier transform algorithim. It
! is to be supplied with two real arrays, one for real parts of function
! one for imaginary parts: It can also unscramble transformed arrays.
! Usage: calling FASTF(XREAL,XIMAG,ISIZE,ITYPE,IFAULT); we supply the
! following:
!
! XREAL - array containing real parts of transform sequence
! XIMAG - array containing imagianry parts of transformation sequence
! ISIZE - size of transform (ISIZE = 4*2*M)
! ITYPE - +1 forward transform
! -1 reverse transform
! IFAULT - 1 if error
! - 0 otherwise
! ===================================================================
!
! Forward transform computes:
! X(k) = sum_{j=0}^{isize-1} x(j)*exp(-2ijk*pi/isize)
! Backward computes:
! x(j) = (1/isize) sum_{k=0}^{isize-1} X(k)*exp(ijk*pi/isize)
!
! Forward followed by backwards will result in the origonal sequence!
!
! ===================================================================
SUBROUTINE FASTF(XREAL,XIMAG,ISIZE,ITYPE,IFAULT)
REAL*8 XREAL(*),XIMAG(*)
INTEGER MAX2,II,IPOW
PARAMETER (MAX2 = 20)
! Check for valid transform size upto 2**(max2):
IFAULT = 1
IF(ISIZE.LT.4) THEN
print*,'FFT: Error: Data array < 4 - Too small!'
return
ENDIF
II = 4
IPOW = 2
! Prepare mod 2:
1 IF((II-ISIZE).NE.0) THEN
II = II*2
IPOW = IPOW + 1
IF(IPOW.GT.MAX2) THEN
print*,'FFT: Error: FFT1!'
return
ENDIF
GOTO 1
ENDIF
! Check for correct type:
IF(IABS(ITYPE).NE.1) THEN
print*,'FFT: Error: Wrong type of transformation!'
return
ENDIF
! No entry errors - continue:
IFAULT = 0
! call FASTG to preform transformation:
CALL FASTG(XREAL,XIMAG,ISIZE,ITYPE)
! Due to Radix 4 factorisation results are not in the same order
! after transformation as they were when the data was submitted:
! We now call SCRAM, to unscramble the reults:
CALL SCRAM(XREAL,XIMAG,ISIZE,IPOW)
return
END
!-END: RADIX4.FOR
! ===============================================================
! Discription: This is the radix 4 complex descreet fast Fourier
! transform with out unscrabling. Suitable for convolutions or other
! applications that do not require unscrambling. Designed for use
! with FASTF.FOR.
!
SUBROUTINE FASTG(XREAL,XIMAG,N,ITYPE)
INTEGER N,IFACA,IFCAB,LITLA
INTEGER I0,I1,I2,I3
REAL*8 XREAL(*),XIMAG(*),BCOS,BSIN,CW1,CW2,PI
REAL*8 SW1,SW2,SW3,TEMPR,X1,X2,X3,XS0,XS1,XS2,XS3
REAL*8 Y1,Y2,Y3,YS0,YS1,YS2,YS3,Z,ZATAN,ZFLOAT,ZSIN
ZATAN(Z) = ATAN(Z)
ZFLOAT(K) = FLOAT(K) ! Real equivalent of K.
ZSIN(Z) = SIN(Z)
PI = (4.0)*ZATAN(1.0)
IFACA = N/4
! Forward transform:
IF(ITYPE.GT.0) THEN
GOTO 5
ENDIF
! If this is for an inverse transform - conjugate the data:
DO 4, K = 1,N
XIMAG(K) = -XIMAG(K)
4 CONTINUE
5 IFCAB = IFACA*4
! Proform appropriate transformations:
Z = PI/ZFLOAT(IFCAB)
BCOS = -2.0*ZSIN(Z)**2
BSIN = ZSIN(2.0*Z)
CW1 = 1.0
SW1 = 0.0
! This is the main body of radix 4 calculations:
DO 10, LITLA = 1,IFACA
DO 8, I0 = LITLA,N,IFCAB
I1 = I0 + IFACA
I2 = I1 + IFACA
I3 = I2 + IFACA
XS0 = XREAL(I0) + XREAL(I2)
XS1 = XREAL(I0) - XREAL(I2)
YS0 = XIMAG(I0) + XIMAG(I2)
YS1 = XIMAG(I0) - XIMAG(I2)
XS2 = XREAL(I1) + XREAL(I3)
XS3 = XREAL(I1) - XREAL(I3)
YS2 = XIMAG(I1) + XIMAG(I3)
YS3 = XIMAG(I1) - XIMAG(I3)
XREAL(I0) = XS0 + XS2
XIMAG(I0) = YS0 + YS2
X1 = XS1 + YS3
Y1 = YS1 - XS3
X2 = XS0 - XS2
Y2 = YS0 - YS2
X3 = XS1 - YS3
Y3 = YS1 + XS3
IF(LITLA.GT.1) THEN
GOTO 7
ENDIF
XREAL(I2) = X1
XIMAG(I2) = Y1
XREAL(I1) = X2
XIMAG(I1) = Y2
XREAL(I3) = X3
XIMAG(I3) = Y3
GOTO 8
! Now IF required - we multiply by twiddle factors:
7 XREAL(I2) = X1*CW1 + Y1*SW1
XIMAG(I2) = Y1*CW1 - X1*SW1
XREAL(I1) = X2*CW2 + Y2*SW2
XIMAG(I1) = Y2*CW2 - X2*SW2
XREAL(I3) = X3*CW3 + Y3*SW3
XIMAG(I3) = Y3*CW3 - X3*SW3
8 CONTINUE
IF(LITLA.EQ.IFACA) THEN
GOTO 10
ENDIF
! Calculate a new set of twiddle factors:
Z = CW1*BCOS - SW1*BSIN + CW1
SW1 = BCOS*SW1 + BSIN*CW1 + SW1
TEMPR = 1.5 - 0.5*(Z*Z + SW1*SW1)
CW1 = Z*TEMPR
SW1 = SW1*TEMPR
CW2 = CW1*CW1 - SW1*SW1
SW2 = 2.0*CW1*SW1
CW3 = CW1*CW2 - SW1*SW2
SW3 = CW1*SW2 + CW2*SW1
10 CONTINUE
IF(IFACA.LE.1) THEN
GOTO 14
ENDIF
! Set up tranform split for next stage:
IFACA = IFACA/4
IF(IFACA.GT.0) THEN
GOTO 5
ENDIF
! This is the calculation of a radix two-stage:
DO 13, K = 1,N,2
TEMPR = XREAL(K) + XREAL(K + 1)
XREAL(K + 1) = XREAL(K) - XREAL(K + 1)
XREAL(K) = TEMPR
TEMPR = XIMAG(K) + XIMAG(K + 1)
XIMAG(K + 1) = XIMAG(K) - XIMAG(K + 1)
XIMAG(K) = TEMPR
13 CONTINUE
14 IF(ITYPE.GT.0) THEN
GOTO 17
ENDIF
! For the inverse case, cojugate and scale the transform:
Z = 1.0/ZFLOAT(N)
DO 16, K = 1,N
XIMAG(K) = -XIMAG(K)*Z
XREAL(K) = XREAL(K)*Z
16 CONTINUE
17 return
END
! ----------------------------------------------------------
!-END of subroutine FASTG.FOR.
! ----------------------------------------------------------
!+ FILE: SCRAM.FOR
! ==========================================================
! Discription: Subroutine for unscrambiling FFT data:
! ==========================================================
SUBROUTINE SCRAM(XREAL,XIMAG,N,IPOW)
INTEGER L(19),II,J1,J2,J3,J4,J5,J6,J7,J8,J9,J10,J11,J12
INTEGER J13,J14,J15,J16,J17,J18,J19,J20,ITOP,I
REAL*8 XREAL(*),XIMAG(*),TEMPR
EQUIVALENCE (L1,L(1)),(L2,L(2)),(L3,L(3)),(L4,L(4))
EQUIVALENCE (L5,L(5)),(L6,L(6)),(L7,L(7)),(L8,L(8))
EQUIVALENCE (L9,L(9)),(L10,L(10)),(L11,L(11)),(L12,L(12))
EQUIVALENCE (L13,L(13)),(L14,L(14)),(L15,L(15)),(L16,L(16))
EQUIVALENCE (L17,L(17)),(L18,L(18)),(L19,L(19))
II = 1
ITOP = 2**(IPOW - 1)
I = 20 - IPOW
DO 5, K = 1,I
L(K) = II
5 CONTINUE
L0 = II
I = I + 1
DO 6, K = I,19
II = II*2
L(K) = II
6 CONTINUE
II = 0
DO 9, J1 = 1,L1,L0
DO 9, J2 = J1,L2,L1
DO 9, J3 = J2,L3,L2
DO 9, J4 = J3,L4,L3
DO 9, J5 = J4,L5,L4
DO 9, J6 = J5,L6,L5
DO 9, J7 = J6,L7,L6
DO 9, J8 = J7,L8,L7
DO 9, J9 = J8,L9,L8
DO 9, J10 = J9,L10,L9
DO 9, J11 = J10,L11,L10
DO 9, J12 = J11,L12,L11
DO 9, J13 = J12,L13,L12
DO 9, J14 = J13,L14,L13
DO 9, J15 = J14,L15,L14
DO 9, J16 = J15,L16,L15
DO 9, J17 = J16,L17,L16
DO 9, J18 = J17,L18,L17
DO 9, J19 = J18,L19,L18
J20 = J19
DO 9, I = 1,2
II = II +1
IF(II.GE.J20) THEN
GOTO 8
ENDIF
! J20 is the bit reverse of II!
! Pairwise exchange:
TEMPR = XREAL(II)
XREAL(II) = XREAL(J20)
XREAL(J20) = TEMPR
TEMPR = XIMAG(II)
XIMAG(II) = XIMAG(J20)
XIMAG(J20) = TEMPR
8 J20 = J20 + ITOP
9 CONTINUE
return
END
! -------------------------------------------------------------------
!-END:
! -------------------------------------------------------------------
通过这个并理解它需要时间!我用几年前发现的CalTech纸写了这篇文章,我不记得我害怕的参考文献。祝你好运。
我希望这会有所帮助。
答案 1 :(得分:2)
您的代码有效。 我会为PI提供更多数字(3.1415926535898)。 此外,您必须将DFT求和的输出除以S,即DFT大小。
由于测试中的输入序列是常量,因此DFT输出应该只有一个非零系数。 事实上,相对于第一个输出系数,所有输出系数都非常小。
但是对于大的输入长度,这不是实现DFT的有效方式。 如果需要考虑时间问题,请查看Fast Fourrier Transform以获得更快的方法来计算DFT。
答案 2 :(得分:2)
您的代码对我来说很合适。我不确定你对输出的期望是什么,但是,鉴于你的输入是一个常数值,常量的DFT是bin 0中的DC项,剩余bin中的0是零(或者是等效的近似值)
您可以尝试使用包含某种类型波形(如正弦波或方波)的较长序列来测试代码。但是,一般情况下,您应该考虑在生产代码中使用类似fftw的东西。很长一段时间以来,它已经被许多人拧干并高度优化。 FFT是针对特殊情况的优化DFT(例如,2的幂的长度)。
答案 3 :(得分:1)
你的代码看起来很好。 out[0]
应代表输入波形的“DC”分量。在您的情况下,它比输入波形大4倍,因为您的归一化系数为1。
其他系数应代表输入波形的幅度和相位。系数是镜像的,即out [i] == out [N-i]。您可以使用以下代码对此进行测试:
double frequency = 1; /* use other values like 2, 3, 4 etc. */
for (int i = 0; i < 16; i++)
numbers.push_back(sin((double)i / 16 * frequency * 2 * PI));
对于frequency = 1
,这会给出:
(6.53592e-07,0)
(6.53592e-07,-8)
(6.53592e-07,1.75661e-07)
(6.53591e-07,2.70728e-07)
(6.5359e-07,3.75466e-07)
(6.5359e-07,4.95006e-07)
(6.53588e-07,6.36767e-07)
(6.53587e-07,8.12183e-07)
(6.53584e-07,1.04006e-06)
(6.53581e-07,1.35364e-06)
(6.53576e-07,1.81691e-06)
(6.53568e-07,2.56792e-06)
(6.53553e-07,3.95615e-06)
(6.53519e-07,7.1238e-06)
(6.53402e-07,1.82855e-05)
(-8.30058e-05,7.99999)
对我来说似乎是正确的:可忽略不计的直流,第一次谐波的幅度为8,其他谐波的幅度可忽略不计。
答案 4 :(得分:0)
MoonKnight已经在Fortran中提供了 radix-4 Decimation In Frequency Cooley-Tukey方案。我在Matlab下面提供基数-2抽取频率 Cooley-Tukey方案。
代码是迭代的,并考虑下图中的方案:
也可以采用递归方法。
正如您将看到的,实现还会计算执行的乘法和加法的数量,并将其与How many FLOPS for FFT?中报告的理论计算进行比较。
代码显然比Matlab利用的高度优化的FFTW慢得多。
另请注意,旋转因子omegaa^((2^(p - 1) * n))
可以离线计算,然后从查找表中恢复,但在下面的代码中会跳过此点。
对于迭代 radix-2抽取时间 Cooley-Tukey方案的Matlab实现,请参阅Implementing a Fast Fourier Transform for Option Pricing。
% --- Radix-2 Decimation In Frequency - Iterative approach
clear all
close all
clc
N = 32;
x = randn(1, N);
xoriginal = x;
xhat = zeros(1, N);
numStages = log2(N);
omegaa = exp(-1i * 2 * pi / N);
mulCount = 0;
sumCount = 0;
tic
M = N / 2;
for p = 1 : numStages;
for index = 0 : (N / (2^(p - 1))) : (N - 1);
for n = 0 : M - 1;
a = x(n + index + 1) + x(n + index + M + 1);
b = (x(n + index + 1) - x(n + index + M + 1)) .* omegaa^((2^(p - 1) * n));
x(n + 1 + index) = a;
x(n + M + 1 + index) = b;
mulCount = mulCount + 4;
sumCount = sumCount + 6;
end;
end;
M = M / 2;
end
xhat = bitrevorder(x);
timeCooleyTukey = toc;
tic
xhatcheck = fft(xoriginal);
timeFFTW = toc;
rms = 100 * sqrt(sum(sum(abs(xhat - xhatcheck).^2)) / sum(sum(abs(xhat).^2)));
fprintf('Time Cooley-Tukey = %f; \t Time FFTW = %f\n\n', timeCooleyTukey, timeFFTW);
fprintf('Theoretical multiplications count \t = %i; \t Actual multiplications count \t = %i\n', ...
2 * N * log2(N), mulCount);
fprintf('Theoretical additions count \t\t = %i; \t Actual additions count \t\t = %i\n\n', ...
3 * N * log2(N), sumCount);
fprintf('Root mean square with FFTW implementation = %.10e\n', rms);
答案 5 :(得分:0)
您的代码是正确的,以获得DFT。
您正在测试的函数是(sin ((double) i / points * frequency * 2)
,它对应于振幅1,频率1和采样频率Fs =取得的点数。
使用获得的数据进行操作:
如您所见,DFT系数相对于位置系数N / 2是对称的,因此只有前N / 2提供信息。通过实部和虚部的模块获得的幅度必须除以N并乘以2以重建它。系数的频率将是Fs / N的倍数乘以系数。
如果我们引入两个正弦波,一个是频率2和幅度1.3,另一个是频率3和幅度1.7。
for (int i = 0; i < 16; i++)
{
numbers.push_back(1.3 *sin((double)i / 16 * frequency1 * 2 * PI)+ 1.7 *
sin((double)i / 16 * frequency2 * 2 * PI));
}
获得的数据是:
祝你好运。