我使用的是R package 插入符号,并行处理不起作用。如果我尝试从train
函数运行示例:
library(mlbench)
data(BostonHousing)
library(doMC)
registerDoMC(2)
## NOTE: don't run models form RWeka when using
### multicore. The session will crash.
## The code for train() does not change:
set.seed(1)
usingMC <- train(medv ~ .,
data = BostonHousing,
"glmboost")
我收到以下错误:
Error in names(resamples) <- gsub("^\\.", "", names(resamples)) :
attempt to set an attribute on NULL
我使用的是2011年初的MacBook Pro,配备2.3GHz Intel Core i5和Mac OS X 10.6.8。
R会话信息:
R版本2.13.0(2011-04-13)平台: x86_64-apple-darwin9.8.0 / x86_64(64位)
附加基础包:[1] stats graphics grDevices utils
数据集方法基础其他附件包:[1] caret_5.13-20 cluster_1.14.2 reshape_0.8.4 plyr_1.7.1 lattice_0.19-33 mlbench_2.1-0
doMC_1.2.3 multicore_0.1-7 [9] foreach_1.3.2 codetools_0.2-8 iterators_1.0.5通过命名空间加载(而不是附加):[1] compiler_2.13.0 grid_2.13.0 rpart_3.1-51 tools_2.13.0
我能做些什么来解决这个问题吗?
答案 0 :(得分:2)
可能很难找到能够重现错误的人:
> sessionInfo ()
R version 2.15.0 (2012-03-30)
Platform: x86_64-pc-linux-gnu (64-bit)
[...剪断...]
other attached packages:
[1] mboost_2.1-2 caret_5.15-023 cluster_1.14.2 reshape_0.8.4
[5] plyr_1.7.1 lattice_0.20-6 doMC_1.2.5 multicore_0.1-7
[9] iterators_1.0.6 foreach_1.4.0 mlbench_2.1-0
loaded via a namespace (and not attached):
[1] codetools_0.2-8 compiler_2.15.0 grid_2.15.0 Matrix_1.0-6
[5] splines_2.15.0 survival_2.36-14 tools_2.15.0
它有效。
这意味着您可能需要深入研究代码:traceback ()
和debug ()
应该有所帮助。
答案 1 :(得分:1)
我至少在2.14.0上无法重现这个问题(见下文)。
插入符代码没有用于顺序和并行处理的不同版本,所以我不确定问题是什么。顺序版本是否有效?其他型号怎么样?你还可以尝试新的会议吗?
此外,您可能希望直接向软件包维护者发送电子邮件(除非您这样做,我错过了它)以获得更好的结果。
> library(caret)
&LT; -snip-&GT;
> library(mlbench)
> data(BostonHousing)
>
> library(doMC)
&LT; -snip-&GT;
> registerDoMC(2)
>
> ## NOTE: don't run models form RWeka when using
> ### multicore. The session will crash.
>
> ## The code for train() does not change:
> set.seed(1)
> usingMC <- train(medv ~ .,
+ data = BostonHousing,
+ "glmboost")
Warning message:
In glmboost.matrix(x = c(0.00632, 0.02731, 0.02729, 0.03237, 0.06905, :
model with centered covariates does not contain intercept
> usingMC
506 samples
13 predictors
No pre-processing
Resampling: Bootstrap (25 reps)
Summary of sample sizes: 506, 506, 506, 506, 506, 506, ...
Resampling results across tuning parameters:
mstop RMSE Rsquared RMSE SD Rsquared SD
50 5.44 0.663 0.484 0.0661
100 5.33 0.675 0.518 0.0669
150 5.27 0.681 0.526 0.0661
Tuning parameter 'prune' was held constant at a value
of 'no'
RMSE was used to select the optimal model using
the smallest value.
The final values used for the model were mstop = 150
and prune = no.
> sessionInfo()
R version 2.14.0 (2011-10-31)
Platform: x86_64-apple-darwin9.8.0/x86_64 (64-bit)
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets
[6] methods base
other attached packages:
[1] mboost_2.1-1 doMC_1.2.5 multicore_0.1-7
[4] iterators_1.0.5 mlbench_2.1-0 caret_5.15-023
[7] foreach_1.4.0 cluster_1.14.1 reshape_0.8.4
[10] plyr_1.7.1 lattice_0.20-0
loaded via a namespace (and not attached):
[1] codetools_0.2-8 compiler_2.14.0 grid_2.14.0
[4] Matrix_1.0-3 splines_2.14.0 survival_2.36-10
[7] tools_2.14.0