具有3个给定点的3D插值(等距)

时间:2012-05-17 19:07:00

标签: math computational-geometry interpolation

我正在开发一款3D国际象棋游戏,我需要能够以这条轨迹描述抛物线的方式计算轨迹的位置X,Y,Z(对于碎片动画)。

因此,对于给定的等距点,我需要下面的公式(或通用公式)p1 =(x1,y1,z1),p2 =(x2,y2,z2)和p3(x3,y3,z3):< / p>

x=f(y,z)=???  
y=f(x,z)=???   
z=f(x,y)=???

2 个答案:

答案 0 :(得分:4)

对于每个组件xyz考虑由

定义的单独抛物线
x(t) = x1 - t*(3*x1-4*x2+x3) + 2*t^2*(x1-2*x2+x3)     //t=0..1
y(t) = y1 - t*(3*y1-4*y2+y3) + 2*t^2*(y1-2*y2+y3)     //t=0..1
z(t) = z1 - t*(3*z1-4*z2+z3) + 2*t^2*(z1-2*z2+z3)     //t=0..1

t=0然后x=x1t=0.5然后x=x2以及t=1然后x=x2。同样适用于y(t)z(t)

答案 1 :(得分:3)

如果开始和结束的y值相同,则可以使用参数方程来描述抛物线,该参数方程可以通过几个步骤导出。

给出startingHeight和apexHeight,

y(t) = A(t^2) + B(t) + C
y(0) = startingHeight
y(0.5) = apexHeight
y(1) = startingHeight

y(0) = startingHeight = A*0 + B*0 + C
C = startingHeight
y(t) = A(t^2) + B(t) + startingHeight

y(1) = startingHeight = A + B + startingHeight
0 = A+B
A = -B
y(t) = -B(t^2) + B(t) + startingHeight

y(0.5) = apexHeight = -B(0.25) + B(0.5) + startingHeight
apexHeight = B(0.5 - 0.25) + startingHeight
apexHeight - startingHeight = B(0.25)
B = (apexHeight - startingHeight)/4.0

现在你知道了A,B和C,你可以为y:

编写方法
function y(startingHeight, apexHeight, t){
    B = (apexHeight - startingHeight) / 4;
    A = -B;
    C = startingHeight;
    return A*t*t + B*t + C;
}

x和z更容易,因为它们从头到尾线性增加:

x(t) = At + B
x(0) = startX
x(1) = endX

x(0) = startX = A*0 + B
B = startX
x(t) = At + startX

x(1) = endX = A*1 + startX
A = endX - startX

x(t) = (endX - startX) * t + startX

(z的公式与x相同 - 只需将所有x替换为z)

function x(start, end, t){
    A = (end - start);
    B = start;
    return A*t + B;
}

function z(start, end, t){
    A = (end - start);
    B = start;
    return A*t + B;
}

现在你可以在时间t找到国际象棋棋子的三维位置:

function parabola(xBegin, xEnd, zBegin, zEnd, yStart, yApex, t){
    return [x(xBegin,xEnd,t), y(yStart,yApex,t), z(zBegin,zEnd,t)];
}