功能检测功能2d

时间:2012-03-28 15:33:11

标签: c opencv detection

有谁知道,检测功能如何工作?例如:

Mat img = imread (...);    
SurfFeatureDetector detector(400); 
vector<KeyPoint> keypoints;
detector.detect(img, keypoints);

特别是关键点如何写作。

我需要在不使用

的情况下在关键点中编写一些坐标
detector.detect(...);

这不起作用

keypoints.push_back(KeyPoint(i,j);

下一个问题: 我有这个功能:

void trajkovic(Mat img, vector<KeyPoint> keypoints)
{    for( int i = 0; i < img.rows-3; i++ )
        for( int j = 0; j < img.cols-3; j++ )
        {   Point2f keyPointLocation(i, j);
            keypoints.push_back(KeyPoint(keyPointLocation, 1)); } }

int main()
{   Mat img_object = imread( ".../box.png", CV_LOAD_IMAGE_GRAYSCALE );
    Mat img_scene = imread( ".../box_in_scene.png", CV_LOAD_IMAGE_GRAYSCALE );

    std::vector<KeyPoint> keypoints_object, keypoints_scene;
    trajkovic(img_object, keypoints_object);
    trajkovic(img_scene, keypoints_scene);
  • 代替(* detector.detect(img_object,keypoints_object); *)

    //-- Step 2: Calculate descriptors (feature vectors)
    SurfDescriptorExtractor extractor;
    
    Mat descriptors_object, descriptors_scene;
    
    extractor.compute( img_object, keypoints_object, descriptors_object );
    extractor.compute( img_scene, keypoints_scene, descriptors_scene );
    
    //-- Step 3: Matching descriptor vectors using FLANN matcher
    FlannBasedMatcher matcher;
    std::vector< DMatch > matches;
    matcher.match( descriptors_object, descriptors_scene, matches );
    
    double max_dist = 0; double min_dist = 100;
    
    //-- Quick calculation of max and min distances between keypoints
    for( int i = 0; i < descriptors_object.rows; i++ )
    { double dist = matches[i].distance;
      if( dist < min_dist ) min_dist = dist;
      if( dist > max_dist ) max_dist = dist;
    }
    
    printf("-- Max dist : %f \n", max_dist );
    printf("-- Min dist : %f \n", min_dist );
    
    //-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
    std::vector< DMatch > good_matches;
    
    for( int i = 0; i < descriptors_object.rows; i++ )
    { if( matches[i].distance < 3*min_dist )
      { good_matches.push_back( matches[i]); }
    }
    
    Mat img_matches;
    drawMatches( img_object, keypoints_object, img_scene, keypoints_scene,
                 good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
                 vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
    
    
    //-- Localize the object from img_1 in img_2
    std::vector<Point2f> obj;
    std::vector<Point2f> scene;
    
    for( int i = 0; i < good_matches.size(); i++ )
    {
      //-- Get the keypoints from the good matches
      obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
      scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
    }
    
    Mat H = findHomography( obj, scene, CV_RANSAC );
    
    cvWaitKey(0);
    return 0;
    

    }

findHomography中的

我有一个错误:“断言失败(npoints&gt; = 0&amp;&amp; points2.Vector(2)== npoints))在findHomography中,文件/modules/calib3d/src/fundam.cpp,line 1062"

怎么了?

我猜错了
keypoints.push_back(KeyPoint(keyPointLocation, 1));

非常感谢

2 个答案:

答案 0 :(得分:1)

首先你应该抛出opencv documentationcv::KeyPoint是用于存储cv::FeatureDetector对象检测到的点的结构。它包含关键点的坐标,有意义的邻域的直径,方向和响应。关键点的计算取决于探测器的定义(Sift,Surf,Mser,...)

开始here

答案 1 :(得分:1)

如果您想手动创建KeyPoint's,这里有一个小样本可以帮助您入门:

vector<KeyPoint> keyPoints;
for(int i = 0; i < 10; i++)
{
    for(int j = 0; j < 10; j++)
    {
        Point2f keyPointLocation(i, j);
        float meaningfulNeighborhoodDiameter = 5.0;
        keyPoints.push_back(KeyPoint(keyPointLocation, meaningfulNeighborhoodDiameter));
    }
}

希望有所帮助!