有谁知道,检测功能如何工作?例如:
Mat img = imread (...);
SurfFeatureDetector detector(400);
vector<KeyPoint> keypoints;
detector.detect(img, keypoints);
特别是关键点如何写作。
我需要在不使用
的情况下在关键点中编写一些坐标detector.detect(...);
这不起作用
keypoints.push_back(KeyPoint(i,j);
下一个问题: 我有这个功能:
void trajkovic(Mat img, vector<KeyPoint> keypoints)
{ for( int i = 0; i < img.rows-3; i++ )
for( int j = 0; j < img.cols-3; j++ )
{ Point2f keyPointLocation(i, j);
keypoints.push_back(KeyPoint(keyPointLocation, 1)); } }
int main()
{ Mat img_object = imread( ".../box.png", CV_LOAD_IMAGE_GRAYSCALE );
Mat img_scene = imread( ".../box_in_scene.png", CV_LOAD_IMAGE_GRAYSCALE );
std::vector<KeyPoint> keypoints_object, keypoints_scene;
trajkovic(img_object, keypoints_object);
trajkovic(img_scene, keypoints_scene);
代替(* detector.detect(img_object,keypoints_object); *)
//-- Step 2: Calculate descriptors (feature vectors)
SurfDescriptorExtractor extractor;
Mat descriptors_object, descriptors_scene;
extractor.compute( img_object, keypoints_object, descriptors_object );
extractor.compute( img_scene, keypoints_scene, descriptors_scene );
//-- Step 3: Matching descriptor vectors using FLANN matcher
FlannBasedMatcher matcher;
std::vector< DMatch > matches;
matcher.match( descriptors_object, descriptors_scene, matches );
double max_dist = 0; double min_dist = 100;
//-- Quick calculation of max and min distances between keypoints
for( int i = 0; i < descriptors_object.rows; i++ )
{ double dist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
}
printf("-- Max dist : %f \n", max_dist );
printf("-- Min dist : %f \n", min_dist );
//-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
std::vector< DMatch > good_matches;
for( int i = 0; i < descriptors_object.rows; i++ )
{ if( matches[i].distance < 3*min_dist )
{ good_matches.push_back( matches[i]); }
}
Mat img_matches;
drawMatches( img_object, keypoints_object, img_scene, keypoints_scene,
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
//-- Localize the object from img_1 in img_2
std::vector<Point2f> obj;
std::vector<Point2f> scene;
for( int i = 0; i < good_matches.size(); i++ )
{
//-- Get the keypoints from the good matches
obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
}
Mat H = findHomography( obj, scene, CV_RANSAC );
cvWaitKey(0);
return 0;
}
我有一个错误:“断言失败(npoints&gt; = 0&amp;&amp; points2.Vector(2)== npoints))在findHomography中,文件/modules/calib3d/src/fundam.cpp,line 1062"
怎么了?
我猜错了keypoints.push_back(KeyPoint(keyPointLocation, 1));
非常感谢
答案 0 :(得分:1)
首先你应该抛出opencv documentation。
cv::KeyPoint
是用于存储cv::FeatureDetector
对象检测到的点的结构。它包含关键点的坐标,有意义的邻域的直径,方向和响应。关键点的计算取决于探测器的定义(Sift,Surf,Mser,...)
开始here!
答案 1 :(得分:1)
如果您想手动创建KeyPoint's,这里有一个小样本可以帮助您入门:
vector<KeyPoint> keyPoints;
for(int i = 0; i < 10; i++)
{
for(int j = 0; j < 10; j++)
{
Point2f keyPointLocation(i, j);
float meaningfulNeighborhoodDiameter = 5.0;
keyPoints.push_back(KeyPoint(keyPointLocation, meaningfulNeighborhoodDiameter));
}
}
希望有所帮助!