我想使用features2d
在两张图片之间绘制好匹配(并非所有匹配)。所以我使用了这段代码:
Mat gray1 = //image1 converted to gray
Mat gray2 = //image2 converted to gray
MatOfDMatch matches = new MatOfDMatch();
MatOfDMatch gm = new MatOfDMatch();
LinkedList<DMatch> good_matches = new LinkedList<DMatch>();
MatOfKeyPoint keypoints_object = new MatOfKeyPoint();
MatOfKeyPoint keypoints_scene = new MatOfKeyPoint();
Mat descriptors_object = new Mat();
Mat descriptors_scene = new Mat();
FeatureDetector fd = FeatureDetector.create(FeatureDetector.ORB);
fd.detect(gray1, keypoints_object);
fd.detect(gray2, keypoints_scene);
// – Step 2: Calculate descriptors (feature vectors)
DescriptorExtractor extractor = DescriptorExtractor
.create(DescriptorExtractor.ORB);
extractor.compute(gray1, keypoints_object, descriptors_object);
extractor.compute(gray2, keypoints_scene, descriptors_scene);
DescriptorMatcher matcher = DescriptorMatcher
.create(DescriptorMatcher.BRUTEFORCE_HAMMING);
matcher.match(descriptors_object, descriptors_scene, matches);
double max_dist = 0;
double min_dist = 100;
List<DMatch> matchesList = matches.toList();
// – Quick calculation of max and min distances between keypoints
for (int i = 0; i < descriptors_object.rows(); i++) {
Double dist = (double) matchesList.get(i).distance;
if (dist < min_dist)
min_dist = dist;
if (dist > max_dist)
max_dist = dist;
}
for (int i = 0; i < descriptors_object.rows(); i++) {
if (matchesList.get(i).distance <= 3 * min_dist) {
good_matches.addLast(matchesList.get(i));
}
}
gm.fromList(good_matches);
List<KeyPoint> keypoints_objectList = keypoints_object.toList();
List<KeyPoint> keypoints_sceneList = keypoints_scene.toList();
MatOfKeyPoint matOfObjectGoodKeyPoints = new MatOfKeyPoint();
MatOfKeyPoint matOfSceneGoodKeyPoints = new MatOfKeyPoint();
LinkedList<KeyPoint> listOfObjectGoodKeyPoints = new LinkedList<KeyPoint>();
LinkedList<KeyPoint> listOfSceneGoodKeyPoints = new LinkedList<KeyPoint>();
for (int i = 0; i < good_matches.size(); i++) {
listOfObjectGoodKeyPoints.addLast(keypoints_objectList
.get(good_matches.get(i).queryIdx));
listOfSceneGoodKeyPoints.addLast(keypoints_sceneList
.get(good_matches.get(i).trainIdx));
}
matOfObjectGoodKeyPoints.fromList(listOfObjectGoodKeyPoints);
matOfSceneGoodKeyPoints.fromList(listOfSceneGoodKeyPoints);
// feature and connection colors
Scalar RED = new Scalar(255, 0, 0);
// output image
Mat outputImg = new Mat();
MatOfByte drawnMatches = new MatOfByte();
// this would draw good matches,but not works fine:
Features2d.drawMatches(gray1, matOfObjectGoodKeyPoints, gray2,
matOfSceneGoodKeyPoints, gm, outputImg, Scalar.all(-1), RED,
drawnMatches, Features2d.NOT_DRAW_SINGLE_POINTS);
但在运行时,会发生此错误:
CvException ... features2d / src / draw.cpp:208:错误:(-215)i2&gt; = 0&amp;&amp; i2&lt; 的static_cast(keypoints2.size())
代码中有什么问题?
答案 0 :(得分:2)
问题是,您将过滤后的列表(即matOfSceneGoodKeyPoints
)提供给drawMatches()
。但是好的匹配列表gm
包含基于原始列表的索引。所以改为
Features2d.drawMatches(gray1, keypoints_object, gray2,
keypoints_scene, gm, outputImg, Scalar.all(-1), RED,
drawnMatches, Features2d.NOT_DRAW_SINGLE_POINTS);
你有你想要的东西。绘制的匹配仍限于最佳匹配,因为只使用gm
中的匹配。