我在球体上有三个坐标(lat,lon)。如果你将整个球体从coord1旋转到coord2,那么coord3现在将在哪里?
我一直在使用Great Circle(http://www.koders.com/python/fid0A930D7924AE856342437CA1F5A9A3EC0CAEACE2.aspx?s=coastline)在Python中尝试这一点,但我创建了奇怪的结果,因为新计算的所有点组合在一起赤道。那必须与我假设的方位角计算有关吗?
有没有人知道如何正确计算?
提前致谢!
修改
我找到了以下内容:http://www.uwgb.edu/dutchs/mathalgo/sphere0.htm
我想我现在需要从笛卡尔坐标(和0,0,0)中的两个点计算旋转轴和旋转角度?我想这一定非常简单,与定义平面和确定法线有关吗?有人可能知道我在哪里可以找到所需的方程吗?
编辑2
Coord1和coord2成了一个很棒的圈子。有没有一种简单的方法可以找到球体上大圆法线轴的位置?
编辑3
看起来我能够解决它;) http://articles.adsabs.harvard.edu//full/1953Metic...1...39L/0000039.000.html成功了。
答案 0 :(得分:0)
好的,我不知道确切的公式,我相信这将是一个简单的矩阵乘法,但是如果没有它,你就可以弄明白。
变换坐标,使旋转的极点分别为90,0和-90,0,这样从coord1到coord2的旋转线就会在“赤道”上(这应该是简单的) delta lat,delta long)
然后旋转只是经度变化,您可以将相同的delta长度应用于任何coord3,然后简单地转换回原始坐标(通过负delta lat和负delta delta)
1& 2几乎就是你的矩阵会做的 - 如果你能找出每一步的矩阵,你可以将它们相乘并得到最终的矩阵
答案 1 :(得分:0)
使用Visual Python我想我现在已经解决了它:
# Rotation first described for geo purposes: http://www.uwgb.edu/dutchs/mathalgo/sphere0.htm
# http://stackoverflow.com/questions/6802577/python-rotation-of-3d-vector
# http://vpython.org/
from visual import *
from math import *
import sys
def ll2cart(lon,lat):
# http://rbrundritt.wordpress.com/2008/10/14/conversion-between-spherical-and-cartesian-coordinates-systems/
x = cos(lat) * cos(lon)
y = cos(lat) * sin(lon)
z = sin(lat)
return x,y,z
def cart2ll(x,y,z):
# http://rbrundritt.wordpress.com/2008/10/14/conversion-between-spherical-and-cartesian-coordinates-systems/
r = sqrt((x**2) + (y**2) + (z**2))
lat = asin(z/r)
lon = atan2(y, x)
return lon, lat
def distance(lon1, lat1, lon2, lat2):
# http://code.activestate.com/recipes/576779-calculating-distance-between-two-geographic-points/
# http://en.wikipedia.org/wiki/Haversine_formula
dlat = lat2 - lat1
dlon = lon2 - lon1
q = sin(dlat/2)**2 + (cos(lat1) * cos(lat2) * (sin(dlon/2)**2))
return 2 * atan2(sqrt(q), sqrt(1-q))
if len(sys.argv) == 1:
sys.exit()
else:
csv = sys.argv[1]
# Points A and B defining the rotation:
LonA = radians(float(sys.argv[2]))
LatA = radians(float(sys.argv[3]))
LonB = radians(float(sys.argv[4]))
LatB = radians(float(sys.argv[5]))
# A and B are both vectors
# The crossproduct AxB is the rotation pole vector P:
Ax, Ay, Az = ll2cart(LonA, LatA)
Bx, By, Bz = ll2cart(LonB, LatB)
A = vector(Ax,Ay,Az)
B = vector(Bx,By,Bz)
P = cross(A,B)
Px,Py,Pz = P
LonP, LatP = cart2ll(Px,Py,Pz)
# The Rotation Angle in radians:
# http://code.activestate.com/recipes/576779-calculating-distance-between-two-geographic-points/
# http://en.wikipedia.org/wiki/Haversine_formula
RotAngle = distance(LonA,LatA,LonB,LatB)
f = open(csv,"r")
o = open(csv[:-4] + "_translated.csv","w")
o.write(f.readline())
for line in f:
(lon, lat) = line.strip().split(",")
# Point C which will be translated:
LonC = radians(float(lon))
LatC = radians(float(lat))
# Point C in Cartesian coordinates:
Cx,Cy,Cz = ll2cart(LonC,LatC)
C = vector(Cx,Cy,Cz)
# C rotated to D:
D = rotate(C,RotAngle,P)
Dx,Dy,Dz = D
LonD,LatD = cart2ll(Dx,Dy,Dz)
o.write(str(degrees(LonD)) + "," + str(degrees(LatD)) + "\n")