使用ggbiplot绘制FactoMineR的PCA对象时扫描警告

时间:2012-03-21 04:41:15

标签: r plot ggplot2 pca ggbiplot

我正在尝试调整ggbiplot以使用PCA包生成的FactoMineR数据对象,但我收到的警告我不明白。

以下是我到目前为止所做的事情,我已经使用else if(inherits(pcobj, 'PCA'))电子邮件列表中的详细信息添加了从}开始到下一个FactoMineR结束的位。我没有改变代码中的其他任何内容,这完全在这里转载:

    ggbiplot <- function(pcobj, choices = 1:2, scale = 1, pc.biplot = TRUE, 
                      obs.scale = 1 - scale, var.scale = scale, 
                      groups = NULL, ellipse = FALSE, ellipse.prob = 0.68, 
                      labels = NULL, labels.size = 3, alpha = 1, 
                      var.axes = TRUE, 
                      circle = FALSE, circle.prob = 0.69, 
                      varname.size = 3, varname.adjust = 1.5, 
                      varname.abbrev = FALSE, ...)
{
  library(ggplot2)
  library(plyr)
  library(scales)
  library(grid)

  stopifnot(length(choices) == 2)

  # Recover the SVD
 if(inherits(pcobj, 'prcomp')){
    nobs.factor <- sqrt(nrow(pcobj$x) - 1)
    d <- pcobj$sdev
    u <- sweep(pcobj$x, 2, 1 / (d * nobs.factor), FUN = '*')
    v <- pcobj$rotation
  } else if(inherits(pcobj, 'princomp')) {
    nobs.factor <- sqrt(pcobj$n.obs)
    d <- pcobj$sdev
    u <- sweep(pcobj$scores, 2, 1 / (d * nobs.factor), FUN = '*')
    v <- pcobj$loadings
  } else if(inherits(pcobj, 'PCA')) {
    nobs.factor <- sqrt(nrow(pcobj$call$X))
    d <- unlist(sqrt(pcobj$eig)[1])
    u <- sweep(pcobj$ind$coord, 2, 1 / (d * nobs.factor), FUN = '*')
    v <- sweep(pcobj$var$coord,2,sqrt(pcobj$eig[1:ncol(pcobj$var$coord),1]),FUN="/")
  } else {
    stop('Expected a object of class prcomp, princomp or PCA')
  }

  # Scores
  df.u <- as.data.frame(sweep(u[,choices], 2, d[choices]^obs.scale, FUN='*'))

  # Directions
  v <- sweep(v, 2, d^var.scale, FUN='*')
  df.v <- as.data.frame(v[, choices])

  names(df.u) <- c('xvar', 'yvar')
  names(df.v) <- names(df.u)

  if(pc.biplot) {
    df.u <- df.u * nobs.factor
  }

  # Scale the radius of the correlation circle so that it corresponds to 
  # a data ellipse for the standardized PC scores
  r <- sqrt(qchisq(circle.prob, df = 2)) * prod(colMeans(df.u^2))^(1/4)

  # Scale directions
  v.scale <- rowSums(v^2)
  df.v <- r * df.v / sqrt(max(v.scale))

  # Change the labels for the axes
  if(obs.scale == 0) {
    u.axis.labs <- paste('standardized PC', choices, sep='')
  } else {
    u.axis.labs <- paste('PC', choices, sep='')
  }

  # Append the proportion of explained variance to the axis labels
  u.axis.labs <- paste(u.axis.labs, 
                       sprintf('(%0.1f%% explained var.)', 
                               100 * pcobj$sdev[choices]^2/sum(pcobj$sdev^2)))

  # Score Labels
  if(!is.null(labels)) {
    df.u$labels <- labels
  }

  # Grouping variable
  if(!is.null(groups)) {
    df.u$groups <- groups
  }

  # Variable Names
  if(varname.abbrev) {
    df.v$varname <- abbreviate(rownames(v))
  } else {
    df.v$varname <- rownames(v)
  }

  # Variables for text label placement
  df.v$angle <- with(df.v, (180/pi) * atan(yvar / xvar))
  df.v$hjust = with(df.v, (1 - varname.adjust * sign(xvar)) / 2)

  # Base plot
  g <- ggplot(data = df.u, aes(x = xvar, y = yvar)) + 
          xlab(u.axis.labs[1]) + ylab(u.axis.labs[2]) + coord_equal()

  if(var.axes) {
    # Draw circle
    if(circle) 
    {
      theta <- c(seq(-pi, pi, length = 50), seq(pi, -pi, length = 50))
      circle <- data.frame(xvar = r * cos(theta), yvar = r * sin(theta))
      g <- g + geom_path(data = circle, color = muted('white'), 
                         size = 1/2, alpha = 1/3)
    }

    # Draw directions
    g <- g +
      geom_segment(data = df.v,
                   aes(x = 0, y = 0, xend = xvar, yend = yvar),
                   arrow = arrow(length = unit(1/2, 'picas')), 
                   color = muted('red'))
  }

  # Draw either labels or points
  if(!is.null(df.u$labels)) {
    if(!is.null(df.u$groups)) {
      g <- g + geom_text(aes(label = labels, color = groups), 
                         size = labels.size)
    } else {
      g <- g + geom_text(aes(label = labels), size = labels.size)      
    }
  } else {
    if(!is.null(df.u$groups)) {
      g <- g + geom_point(aes(color = groups), alpha = alpha)
    } else {
      g <- g + geom_point(alpha = alpha)      
    }
  }

  # Overlay a concentration ellipse if there are groups
  if(!is.null(df.u$groups) && ellipse) {
    theta <- c(seq(-pi, pi, length = 50), seq(pi, -pi, length = 50))
    circle <- cbind(cos(theta), sin(theta))

    ell <- ddply(df.u, 'groups', function(x) {
      if(nrow(x) < 2) {
        return(NULL)
      } else if(nrow(x) == 2) {
        sigma <- var(cbind(x$xvar, x$yvar))
      } else {
        sigma <- diag(c(var(x$xvar), var(x$yvar)))
      }
      mu <- c(mean(x$xvar), mean(x$yvar))
      ed <- sqrt(qchisq(ellipse.prob, df = 2))
      data.frame(sweep(circle %*% chol(sigma) * ed, 2, mu, FUN = '+'), 
                 groups = x$groups[1])
    })
    names(ell)[1:2] <- c('xvar', 'yvar')
    g <- g + geom_path(data = ell, aes(color = groups, group = groups))
  }

  # Label the variable axes
  if(var.axes) {
    g <- g + 
    geom_text(data = df.v, 
              aes(label = varname, x = xvar, y = yvar, 
                  angle = angle, hjust = hjust), 
              color = 'darkred', size = varname.size)
  }
  # Change the name of the legend for groups
  # if(!is.null(groups)) {
  #   g <- g + scale_color_brewer(name = deparse(substitute(groups)), 
  #                               palette = 'Dark2')
  # }



  return(g)
}

它产生一个情节,如下:

library(FactoMineR)
data(decathlon)
res.pca <- PCA(decathlon, quanti.sup = 11:12, quali.sup=13, graph=FALSE)
ggbiplot(res.pca)

enter image description here

但它也会产生这些警告,我不明白(@ baptiste的建议删除了一堆其他警告):

 Warning messages:
1: In sweep(pcobj$ind$coord, 2, 1/(d * nobs.factor), FUN = "*") :
  STATS is longer than the extent of 'dim(x)[MARGIN]'
2: In sweep(v, 2, d^var.scale, FUN = "*") :
  STATS is longer than the extent of 'dim(x)[MARGIN]'

如何修复ggbiplot代码,以便在绘制PCA对象时不会产生这些警告?我担心它们可能导致输出不是我所期望的。

0 个答案:

没有答案