我在以下片段中偶然发现,使用matplotlib创建水平条形图:
import matplotlib
from pylab import *
val = 3+10*rand(5) # the bar lengths
pos = arange(5)+.5 # the bar centers on the y axis
print pos
figure(1)
barh(pos,val, align='center')
yticks(pos, ('Tom', 'Dick', 'Harry', 'Slim', 'Jim'))
xlabel('Performance')
title('horizontal bar chart using matplotlib')
grid(True)
show()
我想修改上面的脚本如下:
帮助我进行上述修改的任何帮助(代码段或链接)都会非常有用。
另外,如果我想制作堆叠的水平条(比如每个标签有3个堆叠的水平条),我如何修改上面的代码来绘制3个堆叠的水平条形图?
[[编辑]]
有人可以发布两个简短的代码段,演示如何:
在水平条的另一侧打印标签(例如,第一个隔离区中出现“负”条的标签,第二个象限中出现“正”条的标签
绘制多个(比如说2或3个)水平条(而不是一个)。好的例子是first two images shown here
答案 0 :(得分:22)
import matplotlib
from pylab import *
val = 3-6*rand(5) # the bar lengths # changed your data slightly
pos = arange(5)+.5 # the bar centers on the y axis
print pos
figure(1)
barh(pos,val, align='center',height=0.1) # notice the 'height' argument
yticks(pos, ('Tom', 'Dick', 'Harry', 'Slim', 'Jim'))
gca().axvline(0,color='k',lw=3) # poor man's zero level
xlabel('Performance')
title('horizontal bar chart using matplotlib')
grid(True)
show()
一般情况下,我建议不要使用from pyplot import *
。除非您处于交互模式,否则请使用面向对象的方法:
import matplotlib.pyplot as plt
from numpy.random import rand
from numpy import arange
val = 3-6*rand(5) # the bar lengths
pos = arange(5)+.5 # the bar centers on the y axis
print pos
fig = plt.figure()
ax = fig.add_subplot(111)
ax.barh(pos,val, align='center',height=0.1)
ax.set_yticks(pos, ('Tom', 'Dick', 'Harry', 'Slim', 'Jim'))
ax.axvline(0,color='k',lw=3) # poor man's zero level
ax.set_xlabel('Performance')
ax.set_title('horizontal bar chart using matplotlib')
ax.grid(True)
plt.show()
各种情节的良好起点是matplotlib
gallery
答案 1 :(得分:9)
正如振亚所说,你必须调整你的情节。
例如,下面是一个生成自定义水平条形图的函数:
默认情况下,它会在右侧绘制类别(人物)的名称,但您当然可以更改它。
import numpy as np
import matplotlib.pyplot as plt
# creation of the data
name_list = ['day1', 'day2', 'day3', 'day4']
data = {name: 3+10*np.random.rand(5) for name in name_list}
colors_list = ['0.5', 'r', 'b', 'g'] #optional
def customize_barh(data, width_bar=1, width_space=0.5, colors=None):
n_measure = len(data) #number of measure per people
n_people = data[data.keys()[0]].size # number of people
#some calculation to determine the position of Y ticks labels
total_space = n_people*(n_measure*width_bar)+(n_people-1)*width_space
ind_space = n_measure*width_bar
step = ind_space/2.
pos = np.arange(step, total_space+width_space, ind_space+width_space)
# create the figure and the axes to plot the data
fig = plt.figure(figsize=(8,6))
ax = fig.add_axes([0.15, 0.15, 0.65, 0.7])
# remove top and right spines and turn ticks off if no spine
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('right') # ticks position on the right
# postition of tick out
ax.tick_params(axis='both', direction='out', width=3, length=6,
labelsize=24, pad=8)
ax.spines['left'].set_linewidth(3)
ax.spines['bottom'].set_linewidth(3)
# plot the data
for i,day in enumerate(data.keys()):
if colors == None:
ax.barh(pos-step+i*width_bar, data[day], width_bar, #facecolor='0.4',
edgecolor='k', linewidth=3)
else:
ax.barh(pos-step+i*width_bar, data[day], width_bar, facecolor=colors[i],
edgecolor='k', linewidth=3)
ax.set_yticks(pos)
# you may want to use the list of name as argument of the function to be more
# flexible (if you have to add a people)
ax.set_yticklabels(('Tom', 'Dick', 'Harry', 'Slim', 'Jim'))
ax.set_ylim((-width_space, total_space+width_space))
ax.set_xlabel('Performance', size=26, labelpad=10)
customize_barh(data, colors=colors_list)
plt.savefig('perf.png')
plt.show()
产生:
答案 2 :(得分:1)
以下代码片段是使用文本函数在左侧为负值注释文本标签,在右侧为阳性值注释gcalmettes和Zhenya所提及的示例。
from pylab import setp
import numpy as np
import matplotlib.pyplot as plt
import math
# creation of the data
name_list = ['day1', 'day2', 'day3', 'day4']
data = {name: 3+10*np.random.rand(5) for name in name_list}
for name in name_list:
data[name][0] = data[name][0]*-1
data[name][2] = data[name][2]*-1
colors_list = ['0.5', 'r', 'b', 'g'] #optional
def customize_barh(data, width_bar=1, width_space=0.5, colors=None):
n_measure = len(data) #number of measure per people
n_people = data[data.keys()[0]].size # number of people
#some calculation to determine the position of Y ticks labels
total_space = n_people*(n_measure*width_bar)+(n_people-1)*width_space
ind_space = n_measure*width_bar
step = ind_space/2.
pos = np.arange(step, total_space+width_space, ind_space+width_space)
# create the figure and the axes to plot the data
fig = plt.figure(figsize=(8,6))
ax = fig.add_axes([0.15, 0.15, 0.65, 0.7])
# remove top and right spines and turn ticks off if no spine
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('default') # ticks position on the right
# postition of tick out
ax.tick_params(axis='both', direction='out', width=3, length=6,
labelsize=24, pad=8)
ax.spines['left'].set_linewidth(3)
ax.spines['bottom'].set_linewidth(3)
# plot the data
for i,day in enumerate(data.keys()):
if colors == None:
ax.barh(pos-step+i*width_bar, data[day], width_bar, #facecolor='0.4',
edgecolor='k', linewidth=3)
else:
ax.barh(pos-step+i*width_bar, data[day], width_bar, facecolor=colors[i],
edgecolor='k', linewidth=3)
ax.set_yticks(pos)
# you may want to use the list of name as argument of the function to be more
# flexible (if you have to add a people)
setp(ax.get_yticklabels(), visible=False)
ax.set_ylim((-width_space, total_space+width_space))
ax.set_xlabel('Performance', size=26, labelpad=10)
labels_list = ['Tom', 'Dick', 'Harry', 'Slim','Jim']
# creation of an array of positive/negative values (based on the values
# of the data) that will be used as x values for adding text as side labels
side_list = []
for index in range(len(labels_list)):
sum = 0
for name in name_list:
sum+= data[name][index]
if math.copysign(1,sum) > 0:
side_list.append(16)
else:
side_list.append(-21)
for label in labels_list:
plt.text(side_list[labels_list.index(label)], pos[labels_list.index(label)]-0.5, label,fontsize=26)
customize_barh(data, colors=colors_list)
plt.savefig('perf.png')
plt.show()
它的工作原理是,给定人员的所有条形都需要为负或正,以便在正确的一侧注释文本。要更改此行为,只需更改side_list的生成。
E.g如果您想要某个条形阈值来确定标签的位置,那么请计算超过该阈值的数据值,而不是将给定名称的值相加。
E.g对于3个小时的阈值,for循环变为
for index in range(len(labels_list)):
count = 0
for name in name_list:
if data[name][index] > 0:
count+= 1
if count > 3:
side_list.append(16)
else:
side_list.append(-21)
还需要更改side_list的生成以适应您的数据范围,因为给出的示例使用指定范围内的随机数据。
例如,您需要调整side_list.append(16)
和side_list.append(-21)
的标签偏移量以适合您的数据。