在Matplotlib的水平堆积条形图

时间:2013-05-20 16:17:21

标签: python matplotlib pandas

我正在尝试使用matplotlib创建水平堆积条形图,但我看不到如何使条形实际堆叠而不是从y轴开始。

这是我的测试代码。

fig = plt.figure()
ax = fig.add_subplot(1,1,1)
plot_chart(df, fig, ax)
ind = arange(df.shape[0])      
ax.barh(ind, df['EndUse_91_1.0'], color='#FFFF00')
ax.barh(ind, df['EndUse_91_nan'], color='#FFFF00')
ax.barh(ind, df['EndUse_80_1.0'], color='#0070C0')
ax.barh(ind, df['EndUse_80_nan'], color='#0070C0')
plt.show()

在看到tcaswell的评论后编辑使用left kwarg。

fig = plt.figure()
ax = fig.add_subplot(1,1,1)
plot_chart(df, fig, ax)
ind = arange(df.shape[0])      
ax.barh(ind, df['EndUse_91_1.0'], color='#FFFF00')
lefts = df['EndUse_91_1.0']
ax.barh(ind, df['EndUse_91_nan'], color='#FFFF00', left=lefts)
lefts = lefts + df['EndUse_91_1.0']
ax.barh(ind, df['EndUse_80_1.0'], color='#0070C0', left=lefts)
lefts = lefts + df['EndUse_91_1.0']
ax.barh(ind, df['EndUse_80_nan'], color='#0070C0', left=lefts)
plt.show()

这似乎是正确的方法,但如果某个条形图没有数据,它会失败,因为它正在尝试将nan添加到一个值,然后返回nan

6 个答案:

答案 0 :(得分:8)

既然您正在使用熊猫,那么值得一提的是您可以在本地进行堆积条形图:

df2.plot(kind='bar', stacked=True)

请参阅visualisation section of the docs

答案 1 :(得分:6)

这是一个解决方案,虽然我确信必须有更好的方法。 series.fillna(0)部分将所有nan替换为0。

fig = plt.figure()
ax = fig.add_subplot(1,1,1)
plot_chart(df, fig, ax)
ind = arange(df.shape[0])      
ax.barh(ind, df['EndUse_91_1.0'], color='#FFFF00')
lefts = df['EndUse_91_1.0'].fillna(0)
ax.barh(ind, df['EndUse_91_nan'], color='#FFFF00', left=lefts)
lefts = lefts + df['EndUse_91_1.0'].fillna(0)
ax.barh(ind, df['EndUse_80_1.0'], color='#0070C0', left=lefts)
lefts = lefts + df['EndUse_91_1.0'].fillna(0)
ax.barh(ind, df['EndUse_80_nan'], color='#0070C0', left=lefts)
plt.show()

答案 2 :(得分:4)

作为旁注,您可以通过以下方式将重复代码包装在循环中:

data_lst = [df['EndUse_91_1.0'], ..]
color_lst = ["FFFF00", ..]
left = 0
for data, color in zip(data_lst, color_lst):
    ax.barh(ind, data, color=color, left=left)
    left += data

模数据卫生

答案 3 :(得分:3)

还有另一个很好的答案,在Stack Overflow中。 它会在附加到列表中时绘制Hbars! Go to answer.

Other post's solution.

答案 4 :(得分:0)

这是一个简单的堆叠水平条形图,显示等待时间和运行时间。

from datetime import datetime
import matplotlib.pyplot as plt

jobs = ['JOB1','JOB2','JOB3','JOB4']

# input wait times
waittimesin = ['03:20:50','04:45:10','06:10:40','05:30:30']
# converting wait times to float
waittimes = []
for wt in waittimesin:
    waittime = datetime.strptime(wt,'%H:%M:%S')
    waittime = waittime.hour + waittime.minute/60 + waittime.second/3600
    waittimes.append(waittime)

# input run times
runtimesin = ['00:20:50','01:00:10','00:30:40','00:10:30']
# converting run times to float    
runtimes = []
for rt in runtimesin:
    runtime = datetime.strptime(rt,'%H:%M:%S')
    runtime = runtime.hour + runtime.minute/60 + runtime.second/3600
    runtimes.append(runtime)

fig = plt.figure()
ax = fig.add_subplot(111)
ax.barh(jobs, waittimes, align='center', height=.25, color='#00ff00',label='wait time')
ax.barh(jobs, runtimes, align='center', height=.25, left=waittimes, color='g',label='run time')
ax.set_yticks(jobs)
ax.set_xlabel('Hour')
ax.set_title('Run Time by Job')
ax.grid(True)
ax.legend()
plt.tight_layout()
#plt.savefig('C:\\Data\\stackedbar.png')
plt.show()

See stacked bar graph

答案 5 :(得分:-1)

使用Mapadd operator添加所有元素也是可能的(并且非常容易)。正如问题Element-wise Addition of 2 Lists in Python?中已经回答的那样。或者只使用numpy数组。