我想要一个水平堆积的条形图,在y轴上带有层次结构标签。我搜索了一下,发现以下漂亮的示例和代码。
但这是用于垂直堆积的条形图的。我想将其应用于水平条形图,因此我只更改了import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
from itertools import groupby
def test_table():
data_table = pd.DataFrame({'Room': ['Room A'] * 4 + ['Room B'] * 3,
'Shelf': ['Shelf 1'] * 2 + ['Shelf 2'] * 2 + ['Shelf 1'] * 2 + ['Shelf 2'],
'Staple':['Milk', 'Water', 'Sugar', 'Honey', 'Wheat', 'Corn', 'Chicken'],
'Quantity': [10, 20, 5, 6, 4, 7, 2,],
'Ordered': np.random.randint(0, 10, 7)
})
data_table
def add_line(ax, xpos, ypos):
line = plt.Line2D([xpos, xpos], [ypos + .1, ypos],
transform=ax.transAxes, color='black')
line.set_clip_on(False)
ax.add_line(line)
def label_len(my_index,level):
labels = my_index.get_level_values(level)
return [(k, sum(1 for i in g)) for k,g in groupby(labels)]
def label_group_bar_table(ax, df):
ypos = -.1
scale = 1./df.index.size
for level in range(df.index.nlevels)[::-1]:
pos = 0
for label, rpos in label_len(df.index,level):
lxpos = (pos + .5 * rpos)*scale
ax.text(lxpos, ypos, label, ha='center', transform=ax.transAxes)
add_line(ax, pos*scale, ypos)
pos += rpos
add_line(ax, pos*scale , ypos)
ypos -= .1
df = test_table().groupby(['Room','Shelf','Staple']).sum()
fig = plt.figure()
ax = fig.add_subplot(111)
df.plot(kind='bar',stacked=True,ax=fig.gca())
#Below 3 lines remove default labels
labels = ['' for item in ax.get_xticklabels()]
ax.set_xticklabels(labels)
ax.set_xlabel('')
label_group_bar_table(ax, df)
fig.subplots_adjust(bottom=.1*df.index.nlevels)
plt.show()
,但这是行不通的。
我设法通过在最后几行中将所有x更改为y来删除默认的ylabel。但是在定义的函数中将x更改为y并没有给我我想要的:层次结构标签仍在x轴上。
有人可以帮忙吗?谢谢。
P.S .:为了减少混乱,我将在this question的第二个答案中找到的原始代码发布了,而不是我尝试修改的代码
android:screenOrientation="sensorLandscape"
答案 0 :(得分:1)
您可以执行以下操作。
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import pandas as pd
import numpy as np
data_table = pd.DataFrame({'Room': ['Room A'] * 4 + ['Room B'] * 3,
'Shelf': ['Shelf 1'] * 2 + ['Shelf 2'] * 2 + ['Shelf 1'] * 2 + ['Shelf 2'],
'Staple': ['Milk', 'Water', 'Sugar', 'Honey', 'Wheat', 'Corn', 'Chicken'],
'Quantity': [10, 20, 5, 6, 4, 7, 2, ],
'Ordered': np.random.randint(0, 10, 7)
})
arrays = [list(data_table['Room']), list(data_table['Shelf']), list(data_table['Staple'])]
data_table = data_table.groupby(['Room', 'Shelf', 'Staple']).sum()
index = pd.MultiIndex.from_tuples(list(zip(*arrays)))
df = pd.DataFrame(data_table[['Ordered', 'Quantity']], index=index).T
# plotting
fig = plt.figure()
height_ratios = [len(df[df.columns.levels[0][0]].columns), len(df[df.columns.levels[0][1]].columns)] #i.e. 4, 3
gs = gridspec.GridSpec(nrows=len(df.columns.levels[0]), ncols=1, height_ratios=height_ratios)
ax1 = fig.add_subplot(gs[0,0])
ax2 = fig.add_subplot(gs[1,0], sharex=ax1)
axes = [ax1, ax2]
for i, col in enumerate(df.columns.levels[0]):
print(col)
ax = axes[i]
df[col].T.plot(ax=ax, stacked=True, kind='barh', width=.8)
ax.legend_.remove()
ax.set_ylabel(col, weight='bold')
ax.xaxis.grid(b=True, which='major', color='black', linestyle='--', alpha=.4)
ax.set_axisbelow(True)
for tick in ax.get_xticklabels():
tick.set_rotation(0)
ax.legend()
# make the ticklines invisible
ax.tick_params(axis=u'both', which=u'both', length=0)
plt.tight_layout()
# remove spacing in between
fig.subplots_adjust(wspace=0) # space between plots
plt.show()