Matlab的互相关函数xcorr(x,y,maxlags)
有一个选项maxlag
,它返回滞后范围[-maxlags:maxlags]
内的互相关序列。 Numpy的numpy.correlate(N,M,mode)
有三种模式,但它们都不允许我设置特定延迟,这与完整(N+M-1)
,同一(max(M, N))
或有效(max(M, N) - min(M, N) + 1 )
不同。对于len(N) = 60000
,len (M) = 200
,我想将滞后设置为100。
答案 0 :(得分:1)
这是我对超前滞后相关性的实现,但它仅限于1-D而不是1-D 保证在效率方面是最好的。它使用scipy.stats.pearsonr进行核心计算,因此返回的是系数的p值。请根据这个稻草人修改优化。
def lagcorr(x,y,lag=None,verbose=True):
'''Compute lead-lag correlations between 2 time series.
<x>,<y>: 1-D time series.
<lag>: lag option, could take different forms of <lag>:
if 0 or None, compute ordinary correlation and p-value;
if positive integer, compute lagged correlation with lag
upto <lag>;
if negative integer, compute lead correlation with lead
upto <-lag>;
if pass in an list or tuple or array of integers, compute
lead/lag correlations at different leads/lags.
Note: when talking about lead/lag, uses <y> as a reference.
Therefore positive lag means <x> lags <y> by <lag>, computation is
done by shifting <x> to the left hand side by <lag> with respect to
<y>.
Similarly negative lag means <x> leads <y> by <lag>, computation is
done by shifting <x> to the right hand side by <lag> with respect to
<y>.
Return <result>: a (n*2) array, with 1st column the correlation
coefficients, 2nd column correpsonding p values.
Currently only works for 1-D arrays.
'''
import numpy
from scipy.stats import pearsonr
if len(x)!=len(y):
raise('Input variables of different lengths.')
#--------Unify types of <lag>-------------
if numpy.isscalar(lag):
if abs(lag)>=len(x):
raise('Maximum lag equal or larger than array.')
if lag<0:
lag=-numpy.arange(abs(lag)+1)
elif lag==0:
lag=[0,]
else:
lag=numpy.arange(lag+1)
elif lag is None:
lag=[0,]
else:
lag=numpy.asarray(lag)
#-------Loop over lags---------------------
result=[]
if verbose:
print '\n#<lagcorr>: Computing lagged-correlations at lags:',lag
for ii in lag:
if ii<0:
result.append(pearsonr(x[:ii],y[-ii:]))
elif ii==0:
result.append(pearsonr(x,y))
elif ii>0:
result.append(pearsonr(x[ii:],y[:-ii]))
result=numpy.asarray(result)
return result
答案 1 :(得分:0)
答案 2 :(得分:0)
matplotlib.xcorr
有maxlags参数。它实际上是numpy.correlate
的包装器,因此没有性能节省。然而,它给出了Matlab的互相关函数给出的完全相同的结果。下面我编辑了maxplotlib中的代码,以便它只返回相关性。原因是如果我们按原样使用matplotlib.corr
,它也将返回该图。问题是,如果我们将复杂数据类型作为参数放入其中,当matplotlib尝试绘制绘图时,我们将得到“将复杂变为实数数据类型”警告。
<!-- language: python -->
import numpy as np
import matplotlib.pyplot as plt
def xcorr(x, y, maxlags=10):
Nx = len(x)
if Nx != len(y):
raise ValueError('x and y must be equal length')
c = np.correlate(x, y, mode=2)
if maxlags is None:
maxlags = Nx - 1
if maxlags >= Nx or maxlags < 1:
raise ValueError('maxlags must be None or strictly positive < %d' % Nx)
c = c[Nx - 1 - maxlags:Nx + maxlags]
return c