我在R(glm)中运行逻辑回归。然后我设法绘制结果。我的代码如下:
temperature.glm = glm(Response~Temperature, data=mydata,family=binomial)
plot(mydata$Temperature,mydata$Response, ,xlab="Temperature",ylab="Probability of Response")
curve(predict(temperature.glm,data.frame(Temperature=x),type="resp"),add=TRUE, col="red")
points(mydata$Temperature,fitted(temperature.glm),pch=20)
title(main="Response-Temperature with Fitted GLM Logistic Regression Line")
我的问题是:
模特:
SET 1
(Intercept) -88.4505
Temperature 2.9677
SET 2
(Intercept) -88.585533
Temperature 2.972168
mydata
分为2列和约700行。
Response Temperature
1 29.33
1 30.37
1 29.52
1 29.66
1 29.57
1 30.04
1 30.58
1 30.41
1 29.61
1 30.51
1 30.91
1 30.74
1 29.91
1 29.99
1 29.99
1 29.99
1 29.99
1 29.99
1 29.99
1 30.71
0 29.56
0 29.56
0 29.56
0 29.56
0 29.56
0 29.57
0 29.51
答案 0 :(得分:16)
要绘制曲线,您只需要定义响应和预测变量之间的关系,并指定您希望绘制该曲线的预测变量值的范围。 e.g:
dat <- structure(list(Response = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 0L, 0L, 0L,
0L, 0L), Temperature = c(29.33, 30.37, 29.52, 29.66, 29.57, 30.04,
30.58, 30.41, 29.61, 30.51, 30.91, 30.74, 29.91, 29.99, 29.99,
29.99, 29.99, 29.99, 29.99, 30.71, 29.56, 29.56, 29.56, 29.56,
29.56, 29.57, 29.51)), .Names = c("Response", "Temperature"),
class = "data.frame", row.names = c(NA, -27L))
temperature.glm <- glm(Response ~ Temperature, data=dat, family=binomial)
plot(dat$Temperature, dat$Response, xlab="Temperature",
ylab="Probability of Response")
curve(predict(temperature.glm, data.frame(Temperature=x), type="resp"),
add=TRUE, col="red")
# To add an additional curve, e.g. that which corresponds to 'Set 1':
curve(plogis(-88.4505 + 2.9677*x), min(dat$Temperature),
max(dat$Temperature), add=TRUE, lwd=2, lty=3)
legend('bottomright', c('temp.glm', 'Set 1'), lty=c(1, 3),
col=2:1, lwd=1:2, bty='n', cex=0.8)
在上面的第二个curve
调用中,我们说逻辑函数定义了x
和y
之间的关系。 plogis(z)
的结果与评估1/(1+exp(-z))
时的结果相同。 min(dat$Temperature)
和max(dat$Temperature)
参数定义了应x
应评估的y
范围。我们不需要告诉x
指温度的函数;当我们指定应该针对该预测值范围评估响应时,这是隐含的。
如您所见,curve
功能允许您绘制曲线而无需模拟预测变量(例如温度)数据。如果你仍然需要这样做,例如为了绘制符合特定模型的伯努利试验的一些模拟结果,您可以尝试以下方法:
n <- 100 # size of random sample
# generate random temperature data (n draws, uniform b/w 27 and 33)
temp <- runif(n, 27, 33)
# Define a function to perform a Bernoulli trial for each value of temp,
# with probability of success for each trial determined by the logistic
# model with intercept = alpha and coef for temperature = beta.
# The function also plots the outcomes of these Bernoulli trials against the
# random temp data, and overlays the curve that corresponds to the model
# used to simulate the response data.
sim.response <- function(alpha, beta) {
y <- sapply(temp, function(x) rbinom(1, 1, plogis(alpha + beta*x)))
plot(y ~ temp, pch=20, xlab='Temperature', ylab='Response')
curve(plogis(alpha + beta*x), min(temp), max(temp), add=TRUE, lwd=2)
return(y)
}
示例:
# Simulate response data for your model 'Set 1'
y <- sim.response(-88.4505, 2.9677)
# Simulate response data for your model 'Set 2'
y <- sim.response(-88.585533, 2.972168)
# Simulate response data for your model temperature.glm
# Here, coef(temperature.glm)[1] and coef(temperature.glm)[2] refer to
# the intercept and slope, respectively
y <- sim.response(coef(temperature.glm)[1], coef(temperature.glm)[2])
下图显示了上面第一个例子生成的图,即对温度随机向量的每个值进行单个伯努利试验的结果,以及描述模拟数据的模型的曲线。