我尝试过搜索一个javascript函数,它会检测两条线是否相互交叉。
该函数将获取每一行的两个起始终点的x,y值(我们称之为A行和B行)。
如果它们相交则返回true,否则返回false。
功能示例。如果答案使用矢量对象,我很高兴。
Function isIntersect (lineAp1x, lineAp1y, lineAp2x, lineAp2y, lineBp1x, lineBp1y, lineBp2x, lineBp2y)
{
// JavaScript line intersecting test here.
}
一些背景信息:此代码适用于我正在尝试在html5画布中制作的游戏,并且是我的碰撞检测的一部分。
答案 0 :(得分:34)
// returns true iff the line from (a,b)->(c,d) intersects with (p,q)->(r,s)
function intersects(a,b,c,d,p,q,r,s) {
var det, gamma, lambda;
det = (c - a) * (s - q) - (r - p) * (d - b);
if (det === 0) {
return false;
} else {
lambda = ((s - q) * (r - a) + (p - r) * (s - b)) / det;
gamma = ((b - d) * (r - a) + (c - a) * (s - b)) / det;
return (0 < lambda && lambda < 1) && (0 < gamma && gamma < 1);
}
};
说明:(向量,矩阵和厚颜无耻的决定因素)
线可以通过一些初始向量v和方向向量d:
来描述r = v + lambda*d
我们使用一个点(a,b)
作为初始向量,并使用它们之间的差异(c-a,d-b)
作为方向向量。同样对于我们的第二行。
如果我们的两条线相交,那么必须有一个点X,它可以通过沿着我们的第一条线行进一段距离lambda,也可以通过沿着第二条线行进的伽马单元到达。这给出了两个X坐标的联立方程:
X = v1 + lambda*d1
X = v2 + gamma *d2
这些方程式可以用矩阵形式表示。我们检查行列式是否为非零,以查看交集X是否存在。
如果有交叉点,那么我们必须检查交叉点是否实际位于两组点之间。如果lambda大于1,则交点超出第二个点。如果lambda小于0,则交点位于第一个点之前。
因此,0<lambda<1 && 0<gamma<1
表示两条线相交!
答案 1 :(得分:31)
function lineIntersect(x1,y1,x2,y2, x3,y3,x4,y4) {
var x=((x1*y2-y1*x2)*(x3-x4)-(x1-x2)*(x3*y4-y3*x4))/((x1-x2)*(y3-y4)-(y1-y2)*(x3-x4));
var y=((x1*y2-y1*x2)*(y3-y4)-(y1-y2)*(x3*y4-y3*x4))/((x1-x2)*(y3-y4)-(y1-y2)*(x3-x4));
if (isNaN(x)||isNaN(y)) {
return false;
} else {
if (x1>=x2) {
if (!(x2<=x&&x<=x1)) {return false;}
} else {
if (!(x1<=x&&x<=x2)) {return false;}
}
if (y1>=y2) {
if (!(y2<=y&&y<=y1)) {return false;}
} else {
if (!(y1<=y&&y<=y2)) {return false;}
}
if (x3>=x4) {
if (!(x4<=x&&x<=x3)) {return false;}
} else {
if (!(x3<=x&&x<=x4)) {return false;}
}
if (y3>=y4) {
if (!(y4<=y&&y<=y3)) {return false;}
} else {
if (!(y3<=y&&y<=y4)) {return false;}
}
}
return true;
}
wiki页面我找到了答案。
答案 2 :(得分:24)
我还在下面的代码中包含了共线的解决方案。
为了解释答案,让我们看一下两条线的每个交叉点的共同点。如下图所示,我们可以看到 P 1 到 IP 到< strong> P 4 逆时针旋转。我们可以看到它的互补边顺时针旋转。现在,我们不知道它是否相交,所以我们不知道交点。但我们也可以看到 P 1 到 P 2 < / strong>到 P 4 也会逆时针旋转。此外, P 1 至 P 2 至 P 3 顺时针旋转。我们可以使用这些知识来确定两条线是否相交。
您会注意到相交的线会创建指向相反方向的四个面。由于它们面向相反的方向,我们知道 P 1 的方向为 P 2 到 P 3 旋转方向不同于 P 1 < / sub> 到 P 2 到 P 4 的即可。我们也知道 P 1 到 P 3 P 4 旋转的方向与 P 2 <不同/ strong>至 P 3 至 P 4
在此示例中,您应该注意到相同的交叉测试模式,两个面旋转相同的方向。由于它们面向相同的方向,我们知道它们不相交。
因此,我们可以将其实现为Peter Wone提供的原始代码。
// Check the direction these three points rotate
function RotationDirection(p1x, p1y, p2x, p2y, p3x, p3y) {
if (((p3y - p1y) * (p2x - p1x)) > ((p2y - p1y) * (p3x - p1x)))
return 1;
else if (((p3y - p1y) * (p2x - p1x)) == ((p2y - p1y) * (p3x - p1x)))
return 0;
return -1;
}
function containsSegment(x1, y1, x2, y2, sx, sy) {
if (x1 < x2 && x1 < sx && sx < x2) return true;
else if (x2 < x1 && x2 < sx && sx < x1) return true;
else if (y1 < y2 && y1 < sy && sy < y2) return true;
else if (y2 < y1 && y2 < sy && sy < y1) return true;
else if (x1 == sx && y1 == sy || x2 == sx && y2 == sy) return true;
return false;
}
function hasIntersection(x1, y1, x2, y2, x3, y3, x4, y4) {
var f1 = RotationDirection(x1, y1, x2, y2, x4, y4);
var f2 = RotationDirection(x1, y1, x2, y2, x3, y3);
var f3 = RotationDirection(x1, y1, x3, y3, x4, y4);
var f4 = RotationDirection(x2, y2, x3, y3, x4, y4);
// If the faces rotate opposite directions, they intersect.
var intersect = f1 != f2 && f3 != f4;
// If the segments are on the same line, we have to check for overlap.
if (f1 == 0 && f2 == 0 && f3 == 0 && f4 == 0) {
intersect = containsSegment(x1, y1, x2, y2, x3, y3) || containsSegment(x1, y1, x2, y2, x4, y4) ||
containsSegment(x3, y3, x4, y4, x1, y1) || containsSegment(x3, y3, x4, y4, x2, y2);
}
return intersect;
}
// Main call for checking intersection. Particularly verbose for explanation purposes.
function checkIntersection() {
// Grab the values
var x1 = parseInt($('#p1x').val());
var y1 = parseInt($('#p1y').val());
var x2 = parseInt($('#p2x').val());
var y2 = parseInt($('#p2y').val());
var x3 = parseInt($('#p3x').val());
var y3 = parseInt($('#p3y').val());
var x4 = parseInt($('#p4x').val());
var y4 = parseInt($('#p4y').val());
// Determine the direction they rotate. (You can combine this all into one step.)
var face1CounterClockwise = RotationDirection(x1, y1, x2, y2, x4, y4);
var face2CounterClockwise = RotationDirection(x1, y1, x2, y2, x3, y3);
var face3CounterClockwise = RotationDirection(x1, y1, x3, y3, x4, y4);
var face4CounterClockwise = RotationDirection(x2, y2, x3, y3, x4, y4);
// If face 1 and face 2 rotate different directions and face 3 and face 4 rotate different directions,
// then the lines intersect.
var intersect = hasIntersection(x1, y1, x2, y2, x3, y3, x4, y4);
// Output the results.
var output = "Face 1 (P1, P2, P4) Rotates: " + ((face1CounterClockwise > 0) ? "counterClockWise" : ((face1CounterClockwise == 0) ? "Linear" : "clockwise")) + "<br />";
var output = output + "Face 2 (P1, P2, P3) Rotates: " + ((face2CounterClockwise > 0) ? "counterClockWise" : ((face2CounterClockwise == 0) ? "Linear" : "clockwise")) + "<br />";
var output = output + "Face 3 (P1, P3, P4) Rotates: " + ((face3CounterClockwise > 0) ? "counterClockWise" : ((face3CounterClockwise == 0) ? "Linear" : "clockwise")) + "<br />";
var output = output + "Face 4 (P2, P3, P4) Rotates: " + ((face4CounterClockwise > 0) ? "counterClockWise" : ((face4CounterClockwise == 0) ? "Linear" : "clockwise")) + "<br />";
var output = output + "Intersection: " + ((intersect) ? "Yes" : "No") + "<br />";
$('#result').html(output);
// Draw the lines.
var canvas = $("#canvas");
var context = canvas.get(0).getContext('2d');
context.clearRect(0, 0, canvas.get(0).width, canvas.get(0).height);
context.beginPath();
context.moveTo(x1, y1);
context.lineTo(x2, y2);
context.moveTo(x3, y3);
context.lineTo(x4, y4);
context.stroke();
}
checkIntersection();
&#13;
<script src="https://ajax.googleapis.com/ajax/libs/jquery/2.1.1/jquery.min.js"></script>
<canvas id="canvas" width="200" height="200" style="border: 2px solid #000000; float: right;"></canvas>
<div style="float: left;">
<div style="float: left;">
<b>Line 1:</b>
<br />P1 x:
<input type="number" min="0" max="200" id="p1x" style="width: 40px;" onChange="checkIntersection();" value="0">y:
<input type="number" min="0" max="200" id="p1y" style="width: 40px;" onChange="checkIntersection();" value="20">
<br />P2 x:
<input type="number" min="0" max="200" id="p2x" style="width: 40px;" onChange="checkIntersection();" value="100">y:
<input type="number" min="0" max="200" id="p2y" style="width: 40px;" onChange="checkIntersection();" value="20">
<br />
</div>
<div style="float: left;">
<b>Line 2:</b>
<br />P3 x:
<input type="number" min="0" max="200" id="p3x" style="width: 40px;" onChange="checkIntersection();" value="150">y:
<input type="number" min="0" max="200" id="p3y" style="width: 40px;" onChange="checkIntersection();" value="100">
<br />P4 x:
<input type="number" min="0" max="200" id="p4x" style="width: 40px;" onChange="checkIntersection();" value="0">y:
<input type="number" min="0" max="200" id="p4y" style="width: 40px;" onChange="checkIntersection();" value="0">
<br />
</div>
<br style="clear: both;" />
<br />
<div style="float: left; border: 1px solid #EEEEEE; padding: 2px;" id="result"></div>
</div>
&#13;
答案 3 :(得分:19)
尽管能够找到交叉点是有用的,但是是否线段相交的测试最常用于多边形命中测试,并且考虑到它的通常应用,你需要快点快速。所以我建议你这样做,只使用减法,乘法,比较和AND。 Turn
计算三点所描述的两条边之间斜率变化的方向:1表示逆时针,0表示无转,-1表示顺时针。
此代码需要表示为GLatLng对象的点,但可以简单地重写为其他表示系统。斜率比较已经标准化为epsilon阻尼浮点误差的容差。
function Turn(p1, p2, p3) {
a = p1.lng(); b = p1.lat();
c = p2.lng(); d = p2.lat();
e = p3.lng(); f = p3.lat();
A = (f - b) * (c - a);
B = (d - b) * (e - a);
return (A > B + Number.EPSILON) ? 1 : (A + Number.EPSILON < B) ? -1 : 0;
}
function isIntersect(p1, p2, p3, p4) {
return (Turn(p1, p3, p4) != Turn(p2, p3, p4)) && (Turn(p1, p2, p3) != Turn(p1, p2, p4));
}
答案 4 :(得分:7)
我改写了Peter Wone使用x / y代替lat()/ long()的单个函数的答案
function isIntersecting(p1, p2, p3, p4) {
function CCW(p1, p2, p3) {
return (p3.y - p1.y) * (p2.x - p1.x) > (p2.y - p1.y) * (p3.x - p1.x);
}
return (CCW(p1, p3, p4) != CCW(p2, p3, p4)) && (CCW(p1, p2, p3) != CCW(p1, p2, p4));
}
答案 5 :(得分:3)
这是一个基于this gist的版本,带有一些更简洁的变量名称和一些咖啡。
background-color: #009eb4; color: white;
var lineSegmentsIntersect = (x1, y1, x2, y2, x3, y3, x4, y4)=> {
var a_dx = x2 - x1;
var a_dy = y2 - y1;
var b_dx = x4 - x3;
var b_dy = y4 - y3;
var s = (-a_dy * (x1 - x3) + a_dx * (y1 - y3)) / (-b_dx * a_dy + a_dx * b_dy);
var t = (+b_dx * (y1 - y3) - b_dy * (x1 - x3)) / (-b_dx * a_dy + a_dx * b_dy);
return (s >= 0 && s <= 1 && t >= 0 && t <= 1);
}
答案 6 :(得分:2)
首先,找到交叉点坐标 - 这里详细描述: http://www.mathopenref.com/coordintersection.html
然后检查交叉点的x坐标是否在其中一条线的x范围内(或者如果您愿意,则与y坐标相同), 即如果xIntersection在lineAp1x和lineAp2x之间,则它们相交。
答案 7 :(得分:0)
对于所有希望为冷敷准备解决方案的人来说,这是我改编自http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/7-b147/java/awt/geom/Line2D.java#Line2D.linesIntersect%28double%2Cdouble%2Cdouble%2Cdouble%2Cdouble%2Cdouble%2Cdouble%2Cdouble%29
的内容imporants函数是来自java.awt.geom.Line2D的ccw和linesIntersect,我将它们写入coldfusion,所以我们在这里:
<cffunction name="relativeCCW" description="schnittpunkt der vier punkte (2 geraden) berechnen">
<!---
Returns an indicator of where the specified point (px,py) lies with respect to this line segment. See the method comments of relativeCCW(double,double,double,double,double,double) to interpret the return value.
Parameters:
px the X coordinate of the specified point to be compared with this Line2D
py the Y coordinate of the specified point to be compared with this Line2D
Returns:
an integer that indicates the position of the specified coordinates with respect to this Line2D
--->
<cfargument name="x1" type="numeric" required="yes" >
<cfargument name="y1" type="numeric" required="yes">
<cfargument name="x2" type="numeric" required="yes" >
<cfargument name="y2" type="numeric" required="yes">
<cfargument name="px" type="numeric" required="yes" >
<cfargument name="py" type="numeric" required="yes">
<cfscript>
x2 = x2 - x1;
y2 = y2 - y1;
px = px - x1;
py = py - y1;
ccw = (px * y2) - (py * x2);
if (ccw EQ 0) {
// The point is colinear, classify based on which side of
// the segment the point falls on. We can calculate a
// relative value using the projection of px,py onto the
// segment - a negative value indicates the point projects
// outside of the segment in the direction of the particular
// endpoint used as the origin for the projection.
ccw = (px * x2) + (py * y2);
if (ccw GT 0) {
// Reverse the projection to be relative to the original x2,y2
// x2 and y2 are simply negated.
// px and py need to have (x2 - x1) or (y2 - y1) subtracted
// from them (based on the original values)
// Since we really want to get a positive answer when the
// point is "beyond (x2,y2)", then we want to calculate
// the inverse anyway - thus we leave x2 & y2 negated.
px = px - x2;
py = py - y2;
ccw = (px * x2) + (py * y2);
if (ccw LT 0) {
ccw = 0;
}
}
}
if (ccw LT 0) {
ret = -1;
}
else if (ccw GT 0) {
ret = 1;
}
else {
ret = 0;
}
</cfscript>
<cfreturn ret>
</cffunction>
<cffunction name="linesIntersect" description="schnittpunkt der vier punkte (2 geraden) berechnen">
<cfargument name="x1" type="numeric" required="yes" >
<cfargument name="y1" type="numeric" required="yes">
<cfargument name="x2" type="numeric" required="yes" >
<cfargument name="y2" type="numeric" required="yes">
<cfargument name="x3" type="numeric" required="yes" >
<cfargument name="y3" type="numeric" required="yes">
<cfargument name="x4" type="numeric" required="yes" >
<cfargument name="y4" type="numeric" required="yes">
<cfscript>
a1 = relativeCCW(x1, y1, x2, y2, x3, y3);
a2 = relativeCCW(x1, y1, x2, y2, x4, y4);
a3 = relativeCCW(x3, y3, x4, y4, x1, y1);
a4 = relativeCCW(x3, y3, x4, y4, x2, y2);
aa = ((relativeCCW(x1, y1, x2, y2, x3, y3) * relativeCCW(x1, y1, x2, y2, x4, y4) LTE 0)
&& (relativeCCW(x3, y3, x4, y4, x1, y1) * relativeCCW(x3, y3, x4, y4, x2, y2) LTE 0));
</cfscript>
<cfreturn aa>
</cffunction>
我希望这有助于适应其他语言?
答案 8 :(得分:0)
这是一个受Dan Fox解决方案启发的TypeScript实现。
如果有交叉点,此实现将为您提供交叉点。否则(平行或无交集),将返回interface Point2D {
x: number;
y: number;
}
function intersection(from1: Point2D, to1: Point2D, from2: Point2D, to2: Point2D): Point2D {
const dX: number = to1.x - from1.x;
const dY: number = to1.y - from1.y;
const determinant: number = dX * (to2.y - from2.y) - (to2.x - from2.x) * dY;
if (determinant === 0) return undefined; // parallel lines
const lambda: number = ((to2.y - from2.y) * (to2.x - from1.x) + (from2.x - to2.x) * (to2.y - from1.y)) / determinant;
const gamma: number = ((from1.y - to1.y) * (to2.x - from1.x) + dX * (to2.y - from1.y)) / determinant;
// check if there is an intersection
if (!(0 <= lambda && lambda <= 1) || !(0 <= gamma && gamma <= 1)) return undefined;
return {
x: from1.x + lambda * dX,
y: from1.y + lambda * dY,
};
}
。
{{1}}
答案 9 :(得分:-1)
使用pythageorum定理找到2个对象之间的距离并添加半径Pythageorum Theorum Distance Formula