我正在建立我的基于blas和lapack的numpy / scipy环境或多或少基于this遍历。
当我完成后,如何检查我的numpy / scipy函数是否确实使用了之前构建的blas / lapack功能?
答案 0 :(得分:280)
方法numpy.__config__.show()
输出有关在构建时收集的链接的信息。我的输出看起来像这样。我认为这意味着我正在使用Mac OS附带的BLAS / LAPACK。
>>>import numpy as np
>>>np.__config__.show()
lapack_opt_info:
extra_link_args = ['-Wl,-framework', '-Wl,Accelerate']
extra_compile_args = ['-msse3']
define_macros = [('NO_ATLAS_INFO', 3)]
blas_opt_info:
extra_link_args = ['-Wl,-framework', '-Wl,Accelerate']
extra_compile_args = ['-msse3', '-I/System/Library/Frameworks/vecLib.framework/Headers']
define_macros = [('NO_ATLAS_INFO', 3)]
答案 1 :(得分:29)
您要搜索的是: system info
我用atlas编译了numpy / scipy,我可以用以下方法检查:
import numpy.distutils.system_info as sysinfo
sysinfo.get_info('atlas')
查看文档以获取更多命令。
答案 2 :(得分:11)
由于它使用动态加载的版本,您可以这样做:
$ ldd anyoftheCmodules.so
anyoftheCmodules.so
可以是numpy/core/_dotblas.so
,例如libblas.so
,链接到{{1}}。
答案 3 :(得分:8)
您可以使用链接加载程序依赖项工具来查看构建的C级钩子组件,并查看它们是否对您选择的blas和lapack具有外部依赖性。我现在不在Linux机器附近,但在OS X机器上,您可以在包含安装的site-packages目录中执行此操作:
$ otool -L numpy/core/_dotblas.so
numpy/core/_dotblas.so:
/System/Library/Frameworks/Accelerate.framework/Versions/A/Accelerate (compatibility version 1.0.0, current version 4.0.0)
/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 125.2.0)
/System/Library/Frameworks/vecLib.framework/Versions/A/vecLib (compatibility version 1.0.0, current version 268.0.1)
$ otool -L scipy/linalg/flapack.so
scipy/linalg/flapack.so (architecture i386):
/System/Library/Frameworks/Accelerate.framework/Versions/A/Accelerate (compatibility version 1.0.0, current version 4.0.0)
/usr/local/lib/libgcc_s.1.dylib (compatibility version 1.0.0, current version 1.0.0)
/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 111.1.4)
/System/Library/Frameworks/vecLib.framework/Versions/A/vecLib (compatibility version 1.0.0, current version 242.0.0)
scipy/linalg/flapack.so (architecture ppc):
/System/Library/Frameworks/Accelerate.framework/Versions/A/Accelerate (compatibility version 1.0.0, current version 4.0.0)
/usr/local/lib/libgcc_s.1.dylib (compatibility version 1.0.0, current version 1.0.0)
/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 111.1.4)
$ otool -L scipy/linalg/fblas.so
scipy/linalg/fblas.so (architecture i386):
/System/Library/Frameworks/Accelerate.framework/Versions/A/Accelerate (compatibility version 1.0.0, current version 4.0.0)
/usr/local/lib/libgcc_s.1.dylib (compatibility version 1.0.0, current version 1.0.0)
/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 111.1.4)
/System/Library/Frameworks/vecLib.framework/Versions/A/vecLib (compatibility version 1.0.0, current version 242.0.0)
scipy/linalg/fblas.so (architecture ppc):
/System/Library/Frameworks/Accelerate.framework/Versions/A/Accelerate (compatibility version 1.0.0, current version 4.0.0)
/usr/local/lib/libgcc_s.1.dylib (compatibility version 1.0.0, current version 1.0.0)
/usr/lib/libSystem.B.dylib (compatibility version 1.0.0, current version 111.1.4)
在gnu / Linux系统上用ldd
代替otool
,你应该得到你需要的答案。
答案 4 :(得分:3)
您可以使用show_config()
显示BLAS,LAPACK和MKL链接:
import numpy as np
np.show_config()
对我来说,它提供输出:
mkl_info:
libraries = ['mkl_rt', 'pthread']
library_dirs = ['/my/environment/path/lib']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['/my/environment/path/include']
blas_mkl_info:
libraries = ['mkl_rt', 'pthread']
library_dirs = ['/my/environment/path/lib']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['/my/environment/path/include']
blas_opt_info:
libraries = ['mkl_rt', 'pthread']
library_dirs = ['/my/environment/path/lib']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['/my/environment/path/include']
lapack_mkl_info:
libraries = ['mkl_rt', 'pthread']
library_dirs = ['/my/environment/path/lib']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['/my/environment/path/include']
lapack_opt_info:
libraries = ['mkl_rt', 'pthread']
library_dirs = ['/my/environment/path/lib']
define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
include_dirs = ['/my/environment/path/include']
答案 5 :(得分:0)
如果您安装了anaconda-navigator(对于Linux,Windows或macOS,请访问www.anaconda.com/anaconda/install/)-blas,scipy和numpy将全部安装,您可以通过单击左侧的环境选项卡来查看它们导航器主页的页面(按字母顺序查找每个目录)。安装完整的anaconda(而不是miniconda或单个软件包)将负责安装数据科学所需的许多基本软件包。