避免atan2计算角度 - atan2精度

时间:2012-01-07 12:08:54

标签: iphone objective-c c math geometry

我们,开发人员经常需要计算角度来执行旋转。通常我们可以使用atan2()函数,但有时我们需要更高的精度。那你做什么?

我知道理论上atan2是精确的,但在我的系统(iOS)中,它的误差大约是0.05弧度,因此它有很大差异。这不仅仅是我的问题。我见过类似的意见。

4 个答案:

答案 0 :(得分:3)

atan2用于从向量a获取角度(x,y)。如果您使用此角度应用旋转,则将使用cos(a)sin(a)。您可以通过归一化(x,y)来简单地计算cos和sin,并保持它们而不是角度。精度会更高,您将在三角函数中节省大量的周期。

编辑。如果你真的想要一个来自(x,y)的角度,可以使用CORDIC的变量来计算你需要的精度。

答案 1 :(得分:2)

如果atan2l的精度高于系统中的long double,则可以使用double

long double atan2l(long double y, long double x);

答案 2 :(得分:2)

在iOS上,我发现标准的三角函数运算符精确到大约13或14个十进制数字,所以你看到0.05弧度的错误听起来很奇怪。如果您可以生成证明这一点的代码和特定值,请file a bug report关于行为(并在此处发布代码,以便我们可以记录它)。

也就是说,如果你的三角运算符确实需要高精度,我已经修改了Dave DeLong为他的DDMathParser代码创建的一些例程。这些例程使用NSDecimal执行数学运算,为您提供最多约34位小数精度,同时避免出现标准浮点问题,并表示基数为10的小数。您可以从here下载这些修改过的例程的代码。

使用以下代码计算atan()的NSDecimal版本:

NSDecimal DDDecimalAtan(NSDecimal x) {
    // from: http://en.wikipedia.org/wiki/Inverse_trigonometric_functions#Infinite_series

    // The normal infinite series diverges if x > 1
    NSDecimal one = DDDecimalOne();
    NSDecimal absX = DDDecimalAbsoluteValue(x);

    NSDecimal z = x;
    if (NSDecimalCompare(&one, &absX) == NSOrderedAscending) 
    {
        // y = x / (1 + sqrt(1+x^2))
        // Atan(x) = 2*Atan(y)
        // From: http://www.mathkb.com/Uwe/Forum.aspx/math/14680/faster-Taylor-s-series-of-Atan-x

        NSDecimal interiorOfRoot;
        NSDecimalMultiply(&interiorOfRoot, &x, &x, NSRoundBankers);
        NSDecimalAdd(&interiorOfRoot, &one, &interiorOfRoot, NSRoundBankers);
        NSDecimal denominator = DDDecimalSqrt(interiorOfRoot);
        NSDecimalAdd(&denominator, &one, &denominator, NSRoundBankers);
        NSDecimal y;
        NSDecimalDivide(&y, &x, &denominator, NSRoundBankers);

        NSDecimalMultiply(&interiorOfRoot, &y, &y, NSRoundBankers);
        NSDecimalAdd(&interiorOfRoot, &one, &interiorOfRoot, NSRoundBankers);
        denominator = DDDecimalSqrt(interiorOfRoot);
        NSDecimalAdd(&denominator, &one, &denominator, NSRoundBankers);
        NSDecimal y2;
        NSDecimalDivide(&y2, &y, &denominator, NSRoundBankers);

//        NSDecimal two = DDDecimalTwo();
        NSDecimal four = DDDecimalFromInteger(4);
        NSDecimal firstArctangent = DDDecimalAtan(y2);

        NSDecimalMultiply(&z, &four, &firstArctangent, NSRoundBankers);
    }
    else
    {
        BOOL shouldSubtract = YES;
        for (NSInteger n = 3; n < 150; n += 2) {
            NSDecimal numerator;
            if (NSDecimalPower(&numerator, &x, n, NSRoundBankers) == NSCalculationUnderflow)
            {
                numerator = DDDecimalZero();
                n = 150;
            }

            NSDecimal denominator = DDDecimalFromInteger(n);

            NSDecimal term;
            if (NSDecimalDivide(&term, &numerator, &denominator, NSRoundBankers) == NSCalculationUnderflow)
            {
                term = DDDecimalZero();
                n = 150;
            }

            if (shouldSubtract) {
                NSDecimalSubtract(&z, &z, &term, NSRoundBankers);
            } else {
                NSDecimalAdd(&z, &z, &term, NSRoundBankers);
            }

            shouldSubtract = !shouldSubtract;
        }
    }

    return z;
}

这使用泰勒级数近似,有一些快捷收敛的快捷方式。我相信精度可能不是完全34位数,结果非常接近Pi / 4弧度,所以我可能仍然需要解决这个问题。

如果您需要极高的精确度,这是一个选项,但是您报告的内容不应该与double值一起发生,所以这里有一些奇怪的事情。

答案 3 :(得分:2)

经常使用角度?不,你没有。在我看过开发人员使用角度的10倍中,7次他应该使用线性代数而避免任何三角函数。

使用矩阵更好地完成旋转,而不是使用角度。另见这个问题:

CGAffineTranformRotate atan2 inaccuration