加快WMA(加权移动平均线)计算

时间:2012-01-03 23:20:04

标签: r finance

我试图在15天的条形图上计算指数移动平均线,但是想要在每天(结束日)/柱上看到15天条形EMA的“演变”。所以,这意味着我有15天的酒吧。当新数据每天进入时,我想使用新信息重新计算EMA。实际上我有15天的酒吧,然后,每天我的新15天酒吧开始增长,每个新的酒吧应该用于EMA计算以及之前的15天酒吧。

让我们说我们从2012-01-01开始(我们有这个例子的每个日历日的数据),在2012-01-15结束时我们有第一个完整的15天吧。在2012-03-01完成4个完整的15天栏后,我们可以开始计算4 bar EMA(EMA(x,n = 4))。在2012-03-02结束时,我们使用到目前为止的信息并在2012-03-02计算EMA,假装2012-03-02的OHLC正在进行中。因此,我们在2012-03-02获取4个完整的条形和条形并计算EMA(x,n = 4)。然后我们再等一天,看看正在进行的新15天酒吧发生了什么(请参阅下面的函数to.period.cumulative了解详细信息)并计算EMA的新值......所以在接下来的15天之后......见函数EMA.cumulative以下详细信息......

下面请找到我能够想到的东西。我的表现是不可接受的,而且由于我的R知识有限,我无法更快地完成任务。

library(quantmod)

do.call.rbind <- function(lst) {
    while(length(lst) > 1) {
        idxlst <- seq(from=1, to=length(lst), by=2)

        lst <- lapply(idxlst, function(i) {
                    if(i==length(lst)) { return(lst[[i]]) }

                    return(rbind(lst[[i]], lst[[i+1]]))
                })
    }
    lst[[1]]
}

to.period.cumulative <- function(x, name=NULL, period="days", numPeriods=15) {
    if(is.null(name))
        name <- deparse(substitute(x))

    cnames <- c("Open", "High", "Low", "Close")
    if (has.Vo(x)) 
        cnames <- c(cnames, "Volume")

    cnames <- paste(name, cnames, sep=".") 

    if (quantmod:::is.OHLCV(x)) {
        x <- OHLCV(x)
        out <- do.call.rbind( 
                lapply(split(x, f=period, k=numPeriods), 
                        function(x) cbind(rep(first(x[,1]), NROW(x[,1])), 
                                cummax(x[,2]), cummin(x[,3]), x[,4], cumsum(x[,5]))))
    } else if (quantmod:::is.OHLC(x)) {
        x <- OHLC(x)
        out <- do.call.rbind( 
                lapply(split(x, f=period, k=numPeriods), 
                        function(x) cbind(rep(first(x[,1]), NROW(x[,1])), 
                                cummax(x[,2]), cummin(x[,3]), x[,4])))
    } else {
        stop("Object does not have OHLC(V).")
    }

    colnames(out) <- cnames

    return(out)
}

EMA.cumulative<-function(cumulativeBars, nEMA = 4, period="days", numPeriods=15) {
    barsEndptCl <- Cl(cumulativeBars[endpoints(cumulativeBars, on=period,     k=numPeriods)])

    # TODO: This is sloooooooooooooooooow... 
    outEMA <- do.call.rbind(
            lapply(split(Cl(cumulativeBars), period), 
                    function(x) {
                        previousFullBars <- barsEndptCl[index(barsEndptCl) < last(index(x)), ]
                        if (NROW(previousFullBars) >= (nEMA - 1)) {
                                last(EMA(last(rbind(previousFullBars, x), n=(nEMA + 1)), n=nEMA))
                        } else {
                            xts(NA, order.by=index(x))
                        }
                    }))

    colnames(outEMA) <- paste("EMA", nEMA, sep="")

    return(outEMA)
}

getSymbols("SPY", from="2010-01-01")

SPY.cumulative <- to.period.cumulative(SPY, , name="SPY")

system.time(
        SPY.EMA <- EMA.cumulative(SPY.cumulative)
)

在我的系统上需要

   user  system elapsed 
  4.708   0.000   4.410 

可接受的执行时间不到一秒......是否可以使用纯R来实现这一目标?

此帖子与Optimize moving averages calculation - is it possible?相关联,但我没有收到任何答案。我现在能够创建一个可重现的示例,更详细地解释我想要加速的内容。我希望这个问题现在更有意义。

有关如何提高速度的任何想法都受到高度赞赏。

1 个答案:

答案 0 :(得分:6)

我没有找到一个令人满意的解决方案来解决我使用R的问题。所以我采用了旧的工具,c语言,结果比我想象的要好。感谢“推”我使用Rcpp,内联等伟大的工具。惊人的。我想,每当我有未来的性能要求并且使用R无法满足时,我会将C添加到R并且性能就在那里。因此,请参阅下面的代码和性能问题的解决方案。

# How to speedup cumulative EMA calculation
# 
###############################################################################

library(quantmod)
library(Rcpp)
library(inline)
library(rbenchmark)

do.call.rbind <- function(lst) {
    while(length(lst) > 1) {
        idxlst <- seq(from=1, to=length(lst), by=2)

        lst <- lapply(idxlst, function(i) {
                    if(i==length(lst)) { return(lst[[i]]) }

                    return(rbind(lst[[i]], lst[[i+1]]))
                })
    }
    lst[[1]]
}

to.period.cumulative <- function(x, name=NULL, period="days", numPeriods=15) {
    if(is.null(name))
        name <- deparse(substitute(x))

    cnames <- c("Open", "High", "Low", "Close")
    if (has.Vo(x)) 
        cnames <- c(cnames, "Volume")

    cnames <- paste(name, cnames, sep=".") 

    if (quantmod:::is.OHLCV(x)) {
        x <- quantmod:::OHLCV(x)
        out <- do.call.rbind( 
                lapply(split(x, f=period, k=numPeriods), 
                        function(x) cbind(rep(first(x[,1]), NROW(x[,1])), 
                                cummax(x[,2]), cummin(x[,3]), x[,4], cumsum(x[,5]))))
    } else if (quantmod:::is.OHLC(x)) {
        x <- OHLC(x)
        out <- do.call.rbind( 
                lapply(split(x, f=period, k=numPeriods), 
                        function(x) cbind(rep(first(x[,1]), NROW(x[,1])), 
                                cummax(x[,2]), cummin(x[,3]), x[,4])))
    } else {
        stop("Object does not have OHLC(V).")
    }

    colnames(out) <- cnames

    return(out)
}

EMA.cumulative<-function(cumulativeBars, nEMA = 4, period="days", numPeriods=15) {
    barsEndptCl <- Cl(cumulativeBars[endpoints(cumulativeBars, on=period, k=numPeriods)])

    # TODO: This is sloooooooooooooooooow... 
    outEMA <- do.call.rbind(
            lapply(split(Cl(cumulativeBars), period), 
                    function(x) {
                        previousFullBars <- barsEndptCl[index(barsEndptCl) < last(index(x)), ]
                        if (NROW(previousFullBars) >= (nEMA - 1)) {
                                last(EMA(last(rbind(previousFullBars, x), n=(nEMA + 1)), n=nEMA))
                        } else {
                            xts(NA, order.by=index(x))
                        }
                    }))

    colnames(outEMA) <- paste("EMA", nEMA, sep="")

    return(outEMA)
}

EMA.c.c.code <- '
    /* Initalize loop and PROTECT counters */
    int i, P=0;

    /* ensure that cumbars and fullbarsrep is double */
    if(TYPEOF(cumbars) != REALSXP) {
      PROTECT(cumbars = coerceVector(cumbars, REALSXP)); P++;
    }

    /* Pointers to function arguments */
    double *d_cumbars = REAL(cumbars);
    int i_nper = asInteger(nperiod);
    int i_n = asInteger(n);
    double d_ratio = asReal(ratio);

    /* Input object length */
    int nr = nrows(cumbars);

    /* Initalize result R object */
    SEXP result;
    PROTECT(result = allocVector(REALSXP,nr)); P++;
    double *d_result = REAL(result);

    /* Find first non-NA input value */
    int beg = i_n*i_nper - 1;
    d_result[beg] = 0;
    for(i = 0; i <= beg; i++) {
        /* Account for leading NAs in input */
        if(ISNA(d_cumbars[i])) {
            d_result[i] = NA_REAL;
            beg++;
            d_result[beg] = 0;
            continue;
        }
        /* Set leading NAs in output */
        if(i < beg) {
            d_result[i] = NA_REAL;
        }
        /* Raw mean to start EMA - but only on full bars*/
        if ((i != 0) && (i%i_nper == (i_nper - 1))) {
            d_result[beg] += d_cumbars[i] / i_n;
        }
    }

    /* Loop over non-NA input values */
    int i_lookback = 0;
    for(i = beg+1; i < nr; i++) {
        i_lookback = i%i_nper;

        if (i_lookback == 0) {
            i_lookback = 1;
        } 
        /*Previous result should be based only on full bars*/
        d_result[i] = d_cumbars[i] * d_ratio + d_result[i-i_lookback] * (1-d_ratio);
    }

    /* UNPROTECT R objects and return result */
    UNPROTECT(P);
    return(result);
'

EMA.c.c <- cfunction(signature(cumbars="numeric", nperiod="numeric", n="numeric",     ratio="numeric"), EMA.c.c.code)

EMA.cumulative.c<-function(cumulativeBars, nEMA = 4, period="days", numPeriods=15) {
    ratio <- 2/(nEMA+1)

    outEMA <- EMA.c.c(cumbars=Cl(cumulativeBars), nperiod=numPeriods, n=nEMA, ratio=ratio)  

    outEMA <- reclass(outEMA, Cl(cumulativeBars))

    colnames(outEMA) <- paste("EMA", nEMA, sep="")

    return(outEMA)
}

getSymbols("SPY", from="2010-01-01")

SPY.cumulative <- to.period.cumulative(SPY, name="SPY")

system.time(
        SPY.EMA <- EMA.cumulative(SPY.cumulative)
)

system.time(
        SPY.EMA.c <- EMA.cumulative.c(SPY.cumulative)
)


res <- benchmark(EMA.cumulative(SPY.cumulative), EMA.cumulative.c(SPY.cumulative),
        columns=c("test", "replications", "elapsed", "relative", "user.self", "sys.self"),
        order="relative",
        replications=10)

print(res)

编辑:为了表明我的繁琐的性能改进(我相信它可以做得更好,因为实际上我创建了双循环)R这里是打印输出:

> print(res)
                              test replications elapsed relative user.self
2 EMA.cumulative.c(SPY.cumulative)           10   0.026    1.000     0.024
1   EMA.cumulative(SPY.cumulative)           10  57.732 2220.462    56.755

因此,根据我的标准,SF类型的改进......