我正在写一个移动平均函数,它在numpy中使用convolve函数,它应该等同于(weighted moving average)。当我的权重都相等时(如简单的算术平均值),它可以正常工作:
data = numpy.arange(1,11)
numdays = 5
w = [1.0/numdays]*numdays
numpy.convolve(data,w,'valid')
给出
array([ 3., 4., 5., 6., 7., 8.])
然而,当我尝试使用加权平均值时
w = numpy.cumsum(numpy.ones(numdays,dtype=float),axis=0); w = w/numpy.sum(w)
而不是(对于相同的数据)3.667,4.667,5.667,6.667,...我希望,我得到
array([ 2.33333333, 3.33333333, 4.33333333, 5.33333333, 6.33333333,
7.33333333])
如果我删除'valid'标志,我甚至看不到正确的值。我真的想使用卷积为WMA和MA,因为它使代码更清晰(相同的代码,不同的权重),否则我认为我将不得不遍历所有数据并采取切片。
有关此行为的任何想法?
答案 0 :(得分:15)
你想要的是卷积中的np.correlate
第二个参数基本上被反转,所以你的预期结果将是np.convolve(data, w[::-1], 'valid')
。