我在Pyspark写了一个时间序列的异常检测算法。我想计算(-3,3)或(-4,4)窗口的加权移动平均值。现在我使用滞后和超越窗口函数并将它们乘以一组权重。我的窗口目前是(-2,2)。
我想知道是否有另一种方法来计算Pyspark的加权移动平均线。
我目前使用的代码是:
data_frame_1 = spark_data_frame.withColumn("weighted_score_predicted", (weights[0] * lag(column_metric, 1).over(w) + weights[1] * lag(column_metric, 2).over(w) + weights[2] * lead(column_metric, 1).over(w) + weights[3] * lead(column_metric, 2).over(w)) / 2).na.drop()
答案 0 :(得分:5)
您可以概括当前的代码:
from pyspark.sql.functions import coalesce, lit, col, lead, lag
from operator import add
from functools import reduce
def weighted_average(c, window, offsets, weights):
assert len(weights) == len(offsets)
def value(i):
if i < 0: return lag(c, -i).over(window)
if i > 0: return lead(c, i).over(window)
return c
# Create a list of Columns
# - `value_i * weight_i` if `value_i IS NOT NULL`
# - literal 0 otherwise
values = [coalesce(value(i) * w, lit(0)) for i, w in zip(offsets, weights)]
# or sum(values, lit(0))
return reduce(add, values, lit(0))
可以用作:
from pyspark.sql.window import Window
df = spark.createDataFrame([
("a", 1, 1.4), ("a", 2, 8.0), ("a", 3, -1.0), ("a", 4, 2.4),
("a", 5, 99.0), ("a", 6, 3.0), ("a", 7, -1.0), ("a", 8, 0.0)
]).toDF("id", "time", "value")
w = Window.partitionBy("id").orderBy("time")
offsets, delays = [-2, -1, 0, 1, 2], [0.1, 0.20, 0.4, 0.20, 0.1]
result = df.withColumn("avg", weighted_average(
col("value"), w, offsets, delays
))
result.show()
## +---+----+-----+-------------------+
## | id|time|value| avg|
## +---+----+-----+-------------------+
## | a| 1| 1.4| 2.06|
## | a| 2| 8.0| 3.5199999999999996|
## | a| 3| -1.0| 11.72|
## | a| 4| 2.4| 21.66|
## | a| 5| 99.0| 40.480000000000004|
## | a| 6| 3.0| 21.04|
## | a| 7| -1.0| 10.1|
## | a| 8| 0.0|0.10000000000000003|
## +---+----+-----+-------------------+
注意强>:
您可以考虑对缺少滞后的帧的结果进行标准化:
result.withColumn(
"normalization_factor",
weighted_average(lit(1), w, offsets, delays)
).withColumn(
"normalized_avg",
col("avg") / col("normalization_factor")
).show()
## +---+----+-----+-------------------+--------------------+------------------+
## | id|time|value| avg|normalization_factor| normalized_avg|
## +---+----+-----+-------------------+--------------------+------------------+
## | a| 1| 1.4| 2.06| 0.7000000000000001|2.9428571428571426|
## | a| 2| 8.0| 3.5199999999999996| 0.9|3.9111111111111105|
## | a| 3| -1.0| 11.72| 1.0000000000000002|11.719999999999999|
## | a| 4| 2.4| 21.66| 1.0000000000000002|21.659999999999997|
## | a| 5| 99.0| 40.480000000000004| 1.0000000000000002| 40.48|
## | a| 6| 3.0| 21.04| 1.0000000000000002|21.039999999999996|
## | a| 7| -1.0| 10.1| 0.9000000000000001| 11.22222222222222|
## | a| 8| 0.0|0.10000000000000003| 0.7000000000000001|0.1428571428571429|
## +---+----+-----+-------------------+--------------------+------------------+