我正在做一个项目,我需要找到从单一来源到单个目的地的最短路径。我只能右转,所以有时我需要做三个右转而不是左转。我已经算法了(我认为)算法,但是我在打印后续路径时遇到了问题。我在每个磁贴上保留一个来自指针的指针,但是当我从最后开始并按照来自指针时,三个权限被采用的时间会导致循环,因为来自指针的指针会被新指针覆盖。如何识别这种循环模式并重新回到轨道上以打印完整路径?
这是我的backTracker类
class backTracker {
int rows;
int cols;
tile** map;
tile* start;
tile* end;
int rightTurns;
int loopTracker;
bool done;
int** visits;
MyStack visited;
public:
backTracker(int inRows, int inCols, tile** inMap, tile* inStart,
tile* inEnd, int** &inVisits) {
rows = inRows;
cols = inCols;
map = inMap;
start = inStart;
end = inEnd;
rightTurns = 0;
loopTracker = 0;
done = false;
visits = inVisits;
}
void findPath() {
backTrack(start);
}
private:
void backTrack(tile* currTile) {
if (currTile == end || done) {
cout << "end found" << endl;
done = true;
return;
}
else if (promising(currTile)) {
//if it's the start tile, check all directions
if (currTile->cameFrom == 0) {
tile* next;
int cRow = currTile->row;
int cCol = currTile->col;
if (cRow != 0) {
next = &map[cRow-1][cCol];
next->cameFrom = currTile;
next->directionFrom = 'N';
backTrack(next);
}
if (cRow != rows - 1) {
next = &map[cRow+1][cCol];
next->cameFrom = currTile;
next->directionFrom = 'S';
backTrack(next);
}
if (cCol != cols - 1) {
next = &map[cRow][cCol+1];
next->cameFrom = currTile;
next->directionFrom = 'E';
backTrack(next);
}
if (cCol != 0) {
next = &map[cRow][cCol-1];
next->cameFrom = currTile;
next->directionFrom = 'W';
backTrack(next);
}
}
//otherwise check straight and right
else {
currTile->straight = 0; //the tile in the straight direction
currTile->right = 0;//the tile to the right of the straight tile
//easier to read
int row = currTile->row;
int col = currTile->col;
bool good = false;
//find the straight and right tiles depending on current
//direction, also check if the tile has been visited from
//that direction already
if (currTile->directionFrom == 'N') {
if (col != cols - 1) {
if (map[row][col+1].directionFrom != 'E') {
currTile->right = &map[row][col+1];
currTile->right->directionFrom = 'E';
good = true;
tile* right = currTile->right;
right->cameFrom = currTile;
backTrack(right);
}
}
if (row != 0) {
//if it hasn't already been visited from this direction
if (map[row-1][col].directionFrom != 'N') {
currTile->straight = &map[row-1][col];
good = true;
tile* str = currTile->straight;
str->cameFrom = currTile;
//going straight so direction is the same
str->directionFrom = currTile->directionFrom;
backTrack(str);
}
}
}
else if (currTile->directionFrom == 'W') {
if (row != 0) {
if (map[row-1][col].directionFrom != 'N') {
currTile->right = &map[row-1][col];
currTile->right->directionFrom = 'N';
good = true;
tile* right = currTile->right;
right->cameFrom = currTile;
backTrack(right);
}
}
if (col != 0) {
if (map[row][col-1].directionFrom != 'W') {
currTile->straight = &map[row][col-1];
good = true;
tile* str = currTile->straight;
str->cameFrom = currTile;
//going straight so direction is the same
str->directionFrom = currTile->directionFrom;
backTrack(str);
}
}
}
else if (currTile->directionFrom == 'S') {
if (col != 0) {
if (map[row][col-1].directionFrom != 'W') {
currTile->right = &map[row][col-1];
currTile->right->directionFrom = 'W';
good = true;
tile* right = currTile->right;
right->cameFrom = currTile;
backTrack(right);
}
}
if (row != rows - 1) {
if (map[row+1][col].directionFrom != 'S') {
currTile->straight = &map[row+1][col];
good = true;
tile* str = currTile->straight;
str->cameFrom = currTile;
//going straight so direction is the same
str->directionFrom = currTile->directionFrom;
backTrack(str);
}
}
}
else if (currTile->directionFrom == 'E'){
if (row != row - 1) {
if (map[row+1][col].directionFrom != 'S') {
currTile->right = &map[row+1][col];
currTile->right->directionFrom = 'S';
good = true;
tile* right = currTile->right;
right->cameFrom = currTile;
backTrack(right);
}
}
if (col != cols - 1) {
if (map[row][col+1].directionFrom != 'E') {
currTile->straight = &map[row][col+1];
good = true;
tile* str = currTile->straight;
str->cameFrom = currTile;
//going straight so direction is the same
str->directionFrom = currTile->directionFrom;
backTrack(str);
}
}
}
}
}
}
//checks for walls
bool promising(tile* currTile) {
if (currTile->type == WALL) {
return false;
}
else {
return true;
}
}
答案 0 :(得分:0)
在每个单元格中存储多条(最多四条)信息。我不知道你是如何搜索你的矩阵的,但我会用某种广度优先算法来做,它试图找到从所有四个方向到每个单元的路径。每个单元格必须存储从所有四个方向到达该单元格所必须采取的步骤数。到达目的地后,将停止此路径构建。要重新创建路径,然后向后并迭代地找到距当前单元格距目的地一步的相邻单元格。