Baum-Welch的实施示例

时间:2011-10-31 19:35:42

标签: java python algorithm statistics machine-learning

我正在尝试学习Baum-Welch算法(与隐马尔可夫模型一起使用)。我理解前向 - 后向模型的基本理论,但有人帮助用一些代码解释它会很好(我发现读代码更容易,因为我可以玩它来理解它)。我检查了github和bitbucket并没有找到任何容易理解的东西。

网上有许多HMM教程,但概率已经提供,或者在拼写检查器的情况下,添加单词的出现以制作模型。如果某人有仅使用观察结果创建Baum-Welch模型的例子,那将会很酷。例如,http://en.wikipedia.org/wiki/Hidden_Markov_model#A_concrete_example如果你只有:{/ p>

states = ('Rainy', 'Sunny')

observations = ('walk', 'shop', 'clean')

这只是一个例子,我认为任何一个解释它的例子,我们可以更好地理解它是好的。我有一个特定的问题,我试图解决,但我认为显示人们可以学习并适用于他们自己的问题的代码可能更有价值(如果不能接受我可以发布我自己的问题)。如果可能的话,在python(或java)中使用它会很好。

提前致谢!

1 个答案:

答案 0 :(得分:12)

以下是我几年前为一堂课写的一些代码,基于Jurafsky / Martin的演示文稿(第2版,第6章,如果您可以访问该书)。它真的不是很好的代码,不使用它绝对应该的numpy,并且它做了一些废话让数组是1索引而不是只是调整公式为0索引,但是,好吧,也许它会救命。 Baum-Welch在代码中被称为“向前 - 向后”。

示例/测试数据基于Jason Eisner's spreadsheet,它实现了一些与HMM相关的算法。请注意,模型的实现版本使用吸收END状态,其他状态具有转换概率,而不是假定预先存在的固定序列长度。

(如果您愿意,也可以使用as a gist。)

hmm.py,其中一半是基于以下文件测试代码:

#!/usr/bin/env python
"""
CS 65 Lab #3 -- 5 Oct 2008
Dougal Sutherland

Implements a hidden Markov model, based on Jurafsky + Martin's presentation,
which is in turn based off work by Jason Eisner. We test our program with
data from Eisner's spreadsheets.
"""


identity = lambda x: x

class HiddenMarkovModel(object):
    """A hidden Markov model."""

    def __init__(self, states, transitions, emissions, vocab):
        """
        states - a list/tuple of states, e.g. ('start', 'hot', 'cold', 'end')
                 start state needs to be first, end state last
                 states are numbered by their order here
        transitions - the probabilities to go from one state to another
                      transitions[from_state][to_state] = prob
        emissions - the probabilities of an observation for a given state
                    emissions[state][observation] = prob
        vocab: a list/tuple of the names of observable values, in order
        """
        self.states = states
        self.real_states = states[1:-1]
        self.start_state = 0
        self.end_state = len(states) - 1
        self.transitions = transitions
        self.emissions = emissions
        self.vocab = vocab

    # functions to get stuff one-indexed
    state_num = lambda self, n: self.states[n]
    state_nums = lambda self: xrange(1, len(self.real_states) + 1)

    vocab_num = lambda self, n: self.vocab[n - 1]
    vocab_nums = lambda self: xrange(1, len(self.vocab) + 1)
    num_for_vocab = lambda self, s: self.vocab.index(s) + 1

    def transition(self, from_state, to_state):
        return self.transitions[from_state][to_state]

    def emission(self, state, observed):
        return self.emissions[state][observed - 1]


    # helper stuff
    def _normalize_observations(self, observations):
        return [None] + [self.num_for_vocab(o) if o.__class__ == str else o
                                               for o in observations]

    def _init_trellis(self, observed, forward=True, init_func=identity):
        trellis = [ [None for j in range(len(observed))]
                          for i in range(len(self.real_states) + 1) ]

        if forward:
            v = lambda s: self.transition(0, s) * self.emission(s, observed[1])
        else:
            v = lambda s: self.transition(s, self.end_state)
        init_pos = 1 if forward else -1

        for state in self.state_nums():
            trellis[state][init_pos] = init_func( v(state) )
        return trellis

    def _follow_backpointers(self, trellis, start):
        # don't bother branching
        pointer = start[0]
        seq = [pointer, self.end_state]
        for t in reversed(xrange(1, len(trellis[1]))):
            val, backs = trellis[pointer][t]
            pointer = backs[0]
            seq.insert(0, pointer)
        return seq


    # actual algorithms

    def forward_prob(self, observations, return_trellis=False):
        """
        Returns the probability of seeing the given `observations` sequence,
        using the Forward algorithm.
        """
        observed = self._normalize_observations(observations)
        trellis = self._init_trellis(observed)

        for t in range(2, len(observed)):
            for state in self.state_nums():
                trellis[state][t] = sum(
                    self.transition(old_state, state)
                        * self.emission(state, observed[t])
                        * trellis[old_state][t-1]
                    for old_state in self.state_nums()
                )
        final = sum(trellis[state][-1] * self.transition(state, -1)
                    for state in self.state_nums())
        return (final, trellis) if return_trellis else final


    def backward_prob(self, observations, return_trellis=False):
        """
        Returns the probability of seeing the given `observations` sequence,
        using the Backward algorithm.
        """
        observed = self._normalize_observations(observations)
        trellis = self._init_trellis(observed, forward=False)

        for t in reversed(range(1, len(observed) - 1)):
            for state in self.state_nums():
                trellis[state][t] = sum(
                    self.transition(state, next_state)
                        * self.emission(next_state, observed[t+1])
                        * trellis[next_state][t+1]
                    for next_state in self.state_nums()
                )
        final = sum(self.transition(0, state)
                        * self.emission(state, observed[1])
                        * trellis[state][1]
                    for state in self.state_nums())
        return (final, trellis) if return_trellis else final


    def viterbi_sequence(self, observations, return_trellis=False):
        """
        Returns the most likely sequence of hidden states, for a given
        sequence of observations. Uses the Viterbi algorithm.
        """
        observed = self._normalize_observations(observations)
        trellis = self._init_trellis(observed, init_func=lambda val: (val, [0]))

        for t in range(2, len(observed)):
            for state in self.state_nums():
                emission_prob = self.emission(state, observed[t])
                last = [(old_state, trellis[old_state][t-1][0] * \
                                    self.transition(old_state, state) * \
                                    emission_prob)
                        for old_state in self.state_nums()]
                highest = max(last, key=lambda p: p[1])[1]
                backs = [s for s, val in last if val == highest]
                trellis[state][t] = (highest, backs)

        last = [(old_state, trellis[old_state][-1][0] * \
                            self.transition(old_state, self.end_state)) 
                for old_state in self.state_nums()]
        highest = max(last, key = lambda p: p[1])[1]
        backs = [s for s, val in last if val == highest]
        seq = self._follow_backpointers(trellis, backs)

        return (seq, trellis) if return_trellis else seq


    def train_on_obs(self, observations, return_probs=False):
        """
        Trains the model once, using the forward-backward algorithm. This
        function returns a new HMM instance rather than modifying this one.
        """
        observed = self._normalize_observations(observations)
        forward_prob,  forwards  = self.forward_prob( observations, True)
        backward_prob, backwards = self.backward_prob(observations, True)

        # gamma values
        prob_of_state_at_time = posat = [None] + [
            [0] + [forwards[state][t] * backwards[state][t] / forward_prob
                for t in range(1, len(observations)+1)]
            for state in self.state_nums()]
        # xi values
        prob_of_transition = pot = [None] + [
            [None] + [
                [0] + [forwards[state1][t] 
                        * self.transition(state1, state2)
                        * self.emission(state2, observed[t+1]) 
                        * backwards[state2][t+1]
                        / forward_prob
                  for t in range(1, len(observations))]
              for state2 in self.state_nums()]
          for state1 in self.state_nums()]

        # new transition probabilities
        trans = [[0 for j in range(len(self.states))]
                    for i in range(len(self.states))]
        trans[self.end_state][self.end_state] = 1

        for state in self.state_nums():
            state_prob = sum(posat[state])
            trans[0][state] = posat[state][1]
            trans[state][-1] = posat[state][-1] / state_prob
            for oth in self.state_nums():
                trans[state][oth] = sum(pot[state][oth]) / state_prob

        # new emission probabilities
        emit = [[0 for j in range(len(self.vocab))]
                   for i in range(len(self.states))]
        for state in self.state_nums():
            for output in range(1, len(self.vocab) + 1):
                n = sum(posat[state][t] for t in range(1, len(observations)+1)
                                              if observed[t] == output)
                emit[state][output-1] = n / sum(posat[state])

        trained = HiddenMarkovModel(self.states, trans, emit, self.vocab)
        return (trained, posat, pot) if return_probs else trained


# ======================
# = reading from files =
# ======================

def normalize(string):
    if '#' in string:
        string = string[:string.index('#')]
    return string.strip()

def make_hmm_from_file(f):
    def nextline():
        line = f.readline()
        if line == '': # EOF
            return None
        else:
            return normalize(line) or nextline()

    n = int(nextline())
    states = [nextline() for i in range(n)] # <3 list comprehension abuse

    num_vocab = int(nextline())
    vocab = [nextline() for i in range(num_vocab)]

    transitions = [[float(x) for x in nextline().split()] for i in range(n)]
    emissions   = [[float(x) for x in nextline().split()] for i in range(n)]

    assert nextline() is None
    return HiddenMarkovModel(states, transitions, emissions, vocab)

def read_observations_from_file(f):
    return filter(lambda x: x, [normalize(line) for line in f.readlines()])

# =========
# = tests =
# =========

import unittest
class TestHMM(unittest.TestCase):
    def setUp(self):
        # it's complicated to pass args to a testcase, so just use globals
        self.hmm = make_hmm_from_file(file(HMM_FILENAME))
        self.obs = read_observations_from_file(file(OBS_FILENAME))

    def test_forward(self):
        prob, trellis = self.hmm.forward_prob(self.obs, True)
        self.assertAlmostEqual(prob,           9.1276e-19, 21)
        self.assertAlmostEqual(trellis[1][1],  0.1,        4)
        self.assertAlmostEqual(trellis[1][3],  0.00135,    5)
        self.assertAlmostEqual(trellis[1][6],  8.71549e-5, 9)
        self.assertAlmostEqual(trellis[1][13], 5.70827e-9, 9)
        self.assertAlmostEqual(trellis[1][20], 1.3157e-10, 14)
        self.assertAlmostEqual(trellis[1][27], 3.1912e-14, 13)
        self.assertAlmostEqual(trellis[1][33], 2.0498e-18, 22)
        self.assertAlmostEqual(trellis[2][1],  0.1,        4)
        self.assertAlmostEqual(trellis[2][3],  0.03591,    5)
        self.assertAlmostEqual(trellis[2][6],  5.30337e-4, 8)
        self.assertAlmostEqual(trellis[2][13], 1.37864e-7, 11)
        self.assertAlmostEqual(trellis[2][20], 2.7819e-12, 15)
        self.assertAlmostEqual(trellis[2][27], 4.6599e-15, 18)
        self.assertAlmostEqual(trellis[2][33], 7.0777e-18, 22)

    def test_backward(self):
        prob, trellis = self.hmm.backward_prob(self.obs, True)
        self.assertAlmostEqual(prob,           9.1276e-19, 21)
        self.assertAlmostEqual(trellis[1][1],  1.1780e-18, 22)
        self.assertAlmostEqual(trellis[1][3],  7.2496e-18, 22)
        self.assertAlmostEqual(trellis[1][6],  3.3422e-16, 20)
        self.assertAlmostEqual(trellis[1][13], 3.5380e-11, 15)
        self.assertAlmostEqual(trellis[1][20], 6.77837e-9, 14)
        self.assertAlmostEqual(trellis[1][27], 1.44877e-5, 10)
        self.assertAlmostEqual(trellis[1][33], 0.1,        4)
        self.assertAlmostEqual(trellis[2][1],  7.9496e-18, 22)
        self.assertAlmostEqual(trellis[2][3],  2.5145e-17, 21)
        self.assertAlmostEqual(trellis[2][6],  1.6662e-15, 19)
        self.assertAlmostEqual(trellis[2][13], 5.1558e-12, 16)
        self.assertAlmostEqual(trellis[2][20], 7.52345e-9, 14)
        self.assertAlmostEqual(trellis[2][27], 9.66609e-5, 9)
        self.assertAlmostEqual(trellis[2][33], 0.1,        4)

    def test_viterbi(self):
        path, trellis = self.hmm.viterbi_sequence(self.obs, True)
        self.assertEqual(path, [0] + [2]*13 + [1]*14 + [2]*6 + [3])
        self.assertAlmostEqual(trellis[1][1] [0],  0.1,      4)
        self.assertAlmostEqual(trellis[1][6] [0],  5.62e-05, 7)
        self.assertAlmostEqual(trellis[1][7] [0],  4.50e-06, 8)
        self.assertAlmostEqual(trellis[1][16][0], 1.99e-09, 11)
        self.assertAlmostEqual(trellis[1][17][0], 3.18e-10, 12)
        self.assertAlmostEqual(trellis[1][23][0], 4.00e-13, 15)
        self.assertAlmostEqual(trellis[1][25][0], 1.26e-13, 15)
        self.assertAlmostEqual(trellis[1][29][0], 7.20e-17, 19)
        self.assertAlmostEqual(trellis[1][30][0], 1.15e-17, 19)
        self.assertAlmostEqual(trellis[1][32][0], 7.90e-19, 21)
        self.assertAlmostEqual(trellis[1][33][0], 1.26e-19, 21)  
        self.assertAlmostEqual(trellis[2][ 1][0], 0.1,      4)
        self.assertAlmostEqual(trellis[2][ 4][0], 0.00502,  5)
        self.assertAlmostEqual(trellis[2][ 6][0], 0.00045,  5)
        self.assertAlmostEqual(trellis[2][12][0], 1.62e-07, 9)
        self.assertAlmostEqual(trellis[2][18][0], 3.18e-12, 14)
        self.assertAlmostEqual(trellis[2][19][0], 1.78e-12, 14)
        self.assertAlmostEqual(trellis[2][23][0], 5.00e-14, 16)
        self.assertAlmostEqual(trellis[2][28][0], 7.87e-16, 18)
        self.assertAlmostEqual(trellis[2][29][0], 4.41e-16, 18)
        self.assertAlmostEqual(trellis[2][30][0], 7.06e-17, 19)
        self.assertAlmostEqual(trellis[2][33][0], 1.01e-18, 20)

    def test_learning_probs(self):
        trained, gamma, xi = self.hmm.train_on_obs(self.obs, True)

        self.assertAlmostEqual(gamma[1][1],  0.129, 3)
        self.assertAlmostEqual(gamma[1][3],  0.011, 3)
        self.assertAlmostEqual(gamma[1][7],  0.022, 3)
        self.assertAlmostEqual(gamma[1][14], 0.887, 3)
        self.assertAlmostEqual(gamma[1][18], 0.994, 3)
        self.assertAlmostEqual(gamma[1][23], 0.961, 3)
        self.assertAlmostEqual(gamma[1][27], 0.507, 3)
        self.assertAlmostEqual(gamma[1][33], 0.225, 3)
        self.assertAlmostEqual(gamma[2][1],  0.871, 3)
        self.assertAlmostEqual(gamma[2][3],  0.989, 3)
        self.assertAlmostEqual(gamma[2][7],  0.978, 3)
        self.assertAlmostEqual(gamma[2][14], 0.113, 3)
        self.assertAlmostEqual(gamma[2][18], 0.006, 3)
        self.assertAlmostEqual(gamma[2][23], 0.039, 3)
        self.assertAlmostEqual(gamma[2][27], 0.493, 3)
        self.assertAlmostEqual(gamma[2][33], 0.775, 3)

        self.assertAlmostEqual(xi[1][1][1],  0.021, 3)
        self.assertAlmostEqual(xi[1][1][12], 0.128, 3)
        self.assertAlmostEqual(xi[1][1][32], 0.13,  3)
        self.assertAlmostEqual(xi[2][1][1],  0.003, 3)
        self.assertAlmostEqual(xi[2][1][22], 0.017, 3)
        self.assertAlmostEqual(xi[2][1][32], 0.095, 3)
        self.assertAlmostEqual(xi[1][2][4],  0.02,  3)
        self.assertAlmostEqual(xi[1][2][16], 0.018, 3)
        self.assertAlmostEqual(xi[1][2][29], 0.010, 3)
        self.assertAlmostEqual(xi[2][2][2],  0.972, 3)
        self.assertAlmostEqual(xi[2][2][12], 0.762, 3)
        self.assertAlmostEqual(xi[2][2][28], 0.907, 3)

    def test_learning_results(self):
        trained = self.hmm.train_on_obs(self.obs)

        tr = trained.transition
        self.assertAlmostEqual(tr(0, 0), 0,      5)
        self.assertAlmostEqual(tr(0, 1), 0.1291, 4)
        self.assertAlmostEqual(tr(0, 2), 0.8709, 4)
        self.assertAlmostEqual(tr(0, 3), 0,      4)
        self.assertAlmostEqual(tr(1, 0), 0,      5)
        self.assertAlmostEqual(tr(1, 1), 0.8757, 4)
        self.assertAlmostEqual(tr(1, 2), 0.1090, 4)
        self.assertAlmostEqual(tr(1, 3), 0.0153, 4)
        self.assertAlmostEqual(tr(2, 0), 0,      5)
        self.assertAlmostEqual(tr(2, 1), 0.0925, 4)
        self.assertAlmostEqual(tr(2, 2), 0.8652, 4)
        self.assertAlmostEqual(tr(2, 3), 0.0423, 4)
        self.assertAlmostEqual(tr(3, 0), 0,      5)
        self.assertAlmostEqual(tr(3, 1), 0,      4)
        self.assertAlmostEqual(tr(3, 2), 0,      4)
        self.assertAlmostEqual(tr(3, 3), 1,      4)

        em = trained.emission
        self.assertAlmostEqual(em(0, 1), 0,      4)
        self.assertAlmostEqual(em(0, 2), 0,      4)
        self.assertAlmostEqual(em(0, 3), 0,      4)
        self.assertAlmostEqual(em(1, 1), 0.6765, 4)
        self.assertAlmostEqual(em(1, 2), 0.2188, 4)
        self.assertAlmostEqual(em(1, 3), 0.1047, 4)
        self.assertAlmostEqual(em(2, 1), 0.0584, 4)
        self.assertAlmostEqual(em(2, 2), 0.4251, 4)
        self.assertAlmostEqual(em(2, 3), 0.5165, 4)
        self.assertAlmostEqual(em(3, 1), 0,      4)
        self.assertAlmostEqual(em(3, 2), 0,      4)
        self.assertAlmostEqual(em(3, 3), 0,      4)

        # train 9 more times
        for i in range(9):
            trained = trained.train_on_obs(self.obs)

        tr = trained.transition
        self.assertAlmostEqual(tr(0, 0), 0,      4)
        self.assertAlmostEqual(tr(0, 1), 0,      4)
        self.assertAlmostEqual(tr(0, 2), 1,      4)
        self.assertAlmostEqual(tr(0, 3), 0,      4)
        self.assertAlmostEqual(tr(1, 0), 0,      4)
        self.assertAlmostEqual(tr(1, 1), 0.9337, 4)
        self.assertAlmostEqual(tr(1, 2), 0.0663, 4)
        self.assertAlmostEqual(tr(1, 3), 0,      4)
        self.assertAlmostEqual(tr(2, 0), 0,      4)
        self.assertAlmostEqual(tr(2, 1), 0.0718, 4)
        self.assertAlmostEqual(tr(2, 2), 0.8650, 4)
        self.assertAlmostEqual(tr(2, 3), 0.0632, 4)
        self.assertAlmostEqual(tr(3, 0), 0,      4)
        self.assertAlmostEqual(tr(3, 1), 0,      4)
        self.assertAlmostEqual(tr(3, 2), 0,      4)
        self.assertAlmostEqual(tr(3, 3), 1,      4)

        em = trained.emission
        self.assertAlmostEqual(em(0, 1), 0,      4)
        self.assertAlmostEqual(em(0, 2), 0,      4)
        self.assertAlmostEqual(em(0, 3), 0,      4)
        self.assertAlmostEqual(em(1, 1), 0.6407, 4)
        self.assertAlmostEqual(em(1, 2), 0.1481, 4)
        self.assertAlmostEqual(em(1, 3), 0.2112, 4)
        self.assertAlmostEqual(em(2, 1), 0.00016,5)
        self.assertAlmostEqual(em(2, 2), 0.5341, 4)
        self.assertAlmostEqual(em(2, 3), 0.4657, 4)
        self.assertAlmostEqual(em(3, 1), 0,      4)
        self.assertAlmostEqual(em(3, 2), 0,      4)
        self.assertAlmostEqual(em(3, 3), 0,      4)

if __name__ == '__main__':
    import sys
    HMM_FILENAME = sys.argv[1] if len(sys.argv) >= 2 else 'example.hmm'
    OBS_FILENAME = sys.argv[2] if len(sys.argv) >= 3 else 'observations.txt'

    unittest.main()

observations.txt,一系列测试观察结果:

2
3
3
2
3
2
3
2
2
3
1
3
3
1
1
1
2
1
1
1
3
1
2
1
1
1
2
3
3
2
3
2
2

example.hmm,用于生成数据的模型

4 # number of states
START
COLD
HOT
END

3 # size of vocab
1
2
3

# transition matrix
0.0 0.5 0.5 0.0  # from start
0.0 0.8 0.1 0.1  # from cold
0.0 0.1 0.8 0.1  # from hot
0.0 0.0 0.0 1.0  # from end

# emission matrix
0.0 0.0 0.0  # from start
0.7 0.2 0.1  # from cold
0.1 0.2 0.7  # from hot
0.0 0.0 0.0  # from end