如何在Kadane的算法中返回最大子数组?

时间:2011-10-15 13:48:58

标签: java algorithm kadanes-algorithm

public class Kadane {
  double maxSubarray(double[] a) {
    double max_so_far = 0;
    double max_ending_here = 0;

    for(int i = 0; i < a.length; i++) {
      max_ending_here = Math.max(0, max_ending_here + a[i]);
      max_so_far = Math.max(max_so_far, max_ending_here);
    }
    return max_so_far;
  }
}

上面的代码返回最大子数组的总和。

我如何返回具有最大总和的子数组?

9 个答案:

答案 0 :(得分:12)

这样的事情:

public class Kadane {
  double[] maxSubarray(double[] a) {
    double max_so_far = 0;
    double max_ending_here = 0;
    int max_start_index = 0;
    int startIndex = 0;
    int max_end_index = -1;

    for(int i = 0; i < a.length; i++) {
      if(0 > max_ending_here +a[i]) {
        startIndex = i+1;
        max_ending_here = 0;
      }
      else {
        max_ending_here += a[i];
      }

      if(max_ending_here > max_so_far) {
        max_so_far = max_ending_here;
        max_start_index = startIndex;
        max_end_index = i;
      }
    }

    if(max_start_index <= max_end_index) {
      return Arrays.copyOfRange(a, max_start_index, max_end_index+1);
    }

    return null;
  }
}

答案 1 :(得分:2)

上面的代码有错误。应该是:

max_ending_here = Math.max(a[i], max_ending_here + a[i]);

NOT:

max_ending_here = Math.max(0, max_ending_here + a[i]);

如果没有,则会失败,例如:2,4,22,19,-48,-5,20,40并返回55而不是60的正确答案。

http://en.wikipedia.org/wiki/Maximum_subarray_problem

查看Kadane算法

答案 2 :(得分:0)

我在列表中维护max_so_far:

for(int i = 0;i<N;i++){
    max_end_here = Math.max(seq[i], max_end_here + seq[i]);
    sum_list.add(max_end_here);
    // System.out.println(max_end_here);
    max_so_far = Math.max(max_so_far, max_end_here);
}

然后搜索列表中的最大总和,其索引为子序列结束。 从索引作为结束开始并向后搜索,找到其值为正的最后一个索引。子序列开始是这个索引。

for(int i=sum_list.size()-1; i>=0; i--){
    if(sum_list.get(i) == max_so_far){
        end = i;
        while(sum_list.get(i) > 0 && i>=0){
            i--;
        }
        start = (i==-1)?0:i+1;
        break;
    }
}

答案 3 :(得分:0)

与算法密切相关的更简单方法。

int main()
{
   int a[]={-2, 1, -3, 4, -1, 2, 1, -5, 4};
   int size=sizeof(a)/sizeof(a[0]);
   int startIndex=0,endIndex=0,i,j;
   int max_so_far=0,max_sum=-999;
   for(i=0;i<size;i++)
   {
   max_so_far=max_so_far+a[i];//kadane's algorithm step 1
   if(max_so_far>max_sum) //computing max
   {
      max_sum=max_so_far;
      endIndex=i;
   }

   if(max_so_far<0)
   {
   max_so_far=0;
   startIndex=i+1;
   }
}
   cout<<max_so_far<<" "<<startIndex<<" "<<endIndex;
   getchar();
   return 0;
}

一旦你有开始和结束索引。

for(i=startIndex;i<=endIndex;i++)
{
cout<<a[i];
}

答案 4 :(得分:0)

我们可以使用以下代码跟踪最大子阵列:

import java.util.Arrays;

public class KadaneSolution4MaxSubArray{

    public static void main(String[]args){
        int [] array = new int[]{13,-3,-25,20 ,-3 ,-16,-23,18,20,-7,12,-5,-22,15,-4,7};

        int[] maxSubArray = maxSubArrayUsingKadaneSol(array);
        for(int e : maxSubArray){
                System.out.print(e+"\t");
            }
        System.out.println();
    }

    public static int[] maxSubArrayUsingKadaneSol(int array[]){
        long maxSoFar =array[0];
        long maxEndingHere =array[0];
        int startIndex = 0;
        int endIndex =0;
        int j=1;
        for(; j< array.length ;j++){
            int val = array[j];
            if(val >= val+maxEndingHere){
                    maxEndingHere = val;
                    startIndex = j;
                }else {
                    maxEndingHere += val;
                    };
            if(maxSoFar < maxEndingHere){
                    maxSoFar = maxEndingHere;
                    endIndex = j;
                }
            }

            return Arrays.copyOfRange(array,startIndex,endIndex+1);
    }   
}

<强> P.S。假设给定数组是Max子阵列问题的候选者,并且没有所有元素为负

答案 5 :(得分:0)

每次启动新的子阵列总和时,更新可能的左(起始)索引。更新max_sum后,更新最后的左右(结束)。还保持一个触发器,告诉是否创建了一个新的子数组和。

int last = 0;
    int sum  = Integer.MIN_VALUE;
    boolean fOrReset = true;
    int _L = -1, L = -1, R = -1;

    for (int j = 0; j < arr.length; j++) {
        last += arr[j];
        if (fOrReset) {
            _L = j+1;
        }
        fOrReset = false;
        if (sum < last) {
            sum = last;
            L = _L;
            R = j+1;
        }
        if (last < 0) {
            last = 0;
            fOrReset = true;
        }
    }

答案 6 :(得分:0)

private static int[] applyKadaneAlgorithmGetSubarrayOptimized(int[] input) {
    int localMax = input[0];
    int globalMax = input[0];
    int start = 0;
    int end = 0;
    for (int i = 1; i < input.length; i++) {
        localMax = Math.max(localMax + input[i], input[i]);
        if(localMax == input[i]) { //this is similar as --> input[i] > (localMax + input[i])
            start = i;
        }
        if(localMax > globalMax) {
            end = i;
        }
        globalMax = Math.max(localMax, globalMax);
    }

    //Below condition only occur`enter code here`s when all members of the array are negative integers
    //Example: {-9, -10, -6, -7, -8, -1, -2, -4}
    if(start > end) {
        start = end;
    }

    return Arrays.copyOfRange(input, start, end + 1);
}

答案 7 :(得分:0)

我知道这是一个旧线程,但是为了清晰起见,我想分享我的解决方案版本。

  • sumMax是存储maxSubArray总和的变量
  • subSum是用于比较总和是否增加的临时变量。
  • 我们知道,只有在subSum重新开始时,我们才应该移动下限

trait SomeType

trait SomeTrait[T <: SomeType] {
  def get(i: Int): Option[SomeType]
}

trait ConcreteType extends SomeType

object ConcreteType extends SomeTrait[ConcreteType]
   
def temp[T <: SomeType]()(implicit tag: ClassTag[T]): Option[T] = {
   asInstanceOf[SomeTrait[T]].get(1)
}

答案 8 :(得分:0)

另一种 C++ 实现,包括 Kadane(实际上只是动态编程方法)和使用索引计算和一些注释扩展的 Kadane:

    int maxSubArray(vector<int>& nums) 
    {        
        int n = nums.size();
        
        if(n == 0) return INT_MIN;
        
        // max sum that ends at index I
        int sumMaxI = nums[0];
        
        // total max sum
        int sumMax = nums[0];
        for(int i = 1; i < n; i++)
        {  
            int curr = nums[i];
            
            // calc current max sum that ends at I
            int currSumMaxI = sumMaxI + curr;
            
            // calc new max sum that ends at I
            sumMaxI = max(currSumMaxI, curr);
            
            // calc new total max sum
            sumMax = max(sumMax, sumMaxI);
        }
        
        return sumMax;
    }    
    
    
    int maxSubArray_findBeginEnd(vector<int>& nums) 
    {        
        int n = nums.size();
        
        if(n == 0) return INT_MIN;
        
        // max sum that ends at index I
        int sumMaxI = nums[0];
        // start index for max sum (end index is I)
        int sumMaxIStart = 0;
                
        // total max sum
        int sumMax = nums[0];
        // start and end index for total max sum
        int sumMaxStart = 0;
        int sumMaxEnd = 0;
        for(int i = 1; i < nums.size(); i++)
        {  
            int curr = nums[i];
            
            // calc current max sum that ends at I
            int currSumMaxI = sumMaxI + curr;
            
            // calc new min sum that ends at I and its starting index
            // this part is equal to: sumMaxI = max(currSumMaxI, curr);
            // but additionaly enables to save new start index as well
            if(curr > currSumMaxI)
            {
                sumMaxI = curr;
                sumMaxIStart = i;
            }
            else
                sumMaxI = currSumMaxI;
                 
            // calculate total max sum
            // this part is equal to: sumMax = max(sumMax, sumMaxI);
            if(sumMaxI > sumMax)
            {
                sumMax = sumMaxI;
                sumMaxStart = sumMaxIStart;
                sumMaxEnd = i;
            }
            // this part is to additionaly capture longest subarray among all that have max sum
            // also, of all subarrays with max sum and max len, one with smallest index
            // will be captured
            else if(sumMaxI == sumMax) 
            {
                if(i - sumMaxIStart > sumMaxEnd - sumMaxStart)
                {
                    sumMaxStart = sumMaxIStart;
                    sumMaxEnd = i;
                }
            }
        }
        
        // check validity of start and end indices
        int checkSum = 0;
        for(int i = sumMaxStart; i <= sumMaxEnd; i++)
            checkSum += nums[i];
        assert(checkSum == sumMax); 
        
        // output indices
        cout << "Max subarray indices: [" << sumMaxStart << "," << sumMaxEnd << "]" << endl;
        
        return sumMax;
    }