mathematica中的插值

时间:2011-10-10 19:30:30

标签: wolfram-mathematica interpolation mathematica-8

请考虑以下分布:

rs={{400, 0.00929}, {410, 0.0348}, {420, 0.0966}, {430, 0.2}, {440, 0.328}, {450, 0.455}, 
    {460, 0.567}, {470, 0.676}, {480, 0.793}, {490, 0.904}, {500, 0.982}, {510, 0.997}, 
    {520,0.935}, {530, 0.811}, {540, 0.65}, {550, 0.481}, {560, 0.329}, {570,0.208}, 
    {580, 0.121}, {590, 0.0655}, {600, 0.0332}, {610, 0.0159}, {620, 0.00737}, 
    {630, 0.00334}, {640, 0.0015}, {650,0.000677}, {660, 0.000313}, {670, 0.000148}, 
    {680, 0.0000715}, {690,0.0000353}, {700, 0.0000178}}

enter image description here

如何插入此分布以获取X轴上任何位置的点的值?

3 个答案:

答案 0 :(得分:7)

只需使用标准Interpolation功能:

rsInterpolation = Interpolation@rs;
Plot[rsInterpolation@x, {x, 400, 700}]

Result

如果您想要适合特定类别的函数(例如正态分布),请使用FindFit

答案 1 :(得分:5)

如果您需要不错的衍生品,您可以执行以下操作:

interp = Interpolation[rs, InterpolationOrder -> 3, Method -> "Spline"]
Show[Plot[{interp[x], 10 interp'[x]}, {x, Min[First /@ rs], Max[First /@ rs]},
          PlotRange -> Full],
     ListPlot@rs]

enter image description here

使用“样条曲线”方法时,请查看导数行为的差异:

interp  = Interpolation[rs, InterpolationOrder -> 3, Method -> "Spline"]
interp1 = Interpolation[rs, InterpolationOrder -> 3]
Show[Plot[{interp1'[x], interp'[x] - .005}, 
          {x, Min[First /@ rs], Max[First /@ rs]}, PlotRange -> Full]]

enter image description here

答案 2 :(得分:0)

如果是分发版,我认为您应该使用 SmoothKernelDistribution