线平分线与矩形的交点

时间:2011-09-21 17:09:33

标签: c algorithm geometry 2d computational-geometry

我一整天都试图绕过这个......

基本上,我有两个点的坐标总是在一个矩形内。 我也知道矩形角的位置。这两个入口点是在运行时给出的。

我需要一个算法来找到2个点,其中由给定点之间的线段产生的平分线与该矩形相交。

image http://f.cl.ly/items/0o3g1G0F0V120R3S2Q3H/coop.jpg

一些细节:

在上图中,A和B由它们的坐标给出:A(x1,y1)和B(x2,y2)。基本上,我需要找到C和D的位置。 红色X是AB段的中心。这一点(让我们称之为中心)必须在CD线上。

我做了什么:

  • 找到了中心:

    center.x = (A.x+B.x)/2;
    center.y = (A.y+B.y)/2;
    
  • 找到CD斜率:

    AB_slope =  A.y - B.y / A.x - B.x;
    CD_slope = -1/AB_slope;
    

知道中心和CD斜率给了我CD等式,我试图通过尝试矩形的所有4个边界上的点的位置来找到解决方案。 然而,由于某些原因它不起作用:每次我有一个解决方案,让我们说C,D在外面绘制,反之亦然。

以下是我正在使用的公式:

  • 知道x:

    y = (CD_slope * (x - center.x)) + center.y;
    if y > 0 && y < 512: #=> solution found!
    
  • 知道y:

    x = (y - center.y + CD_slope*center.x)/CD_slope;
    if x > 0 && x < 512: #=> solution found!
    

由此,我也可以得到另一个片段(假设我找到了C并且我知道了中心),但几何失败了我找到这个片段的延伸直到它与矩形的另一边相交

已更新,其中包含编码代码

(见主要功能评论)

typedef struct { double x; double y; } Point;

Point calculate_center(Point p1, Point p2) {
    Point point;
    point.x = (p1.x+p2.x)/2;
    point.y = (p1.y+p2.y)/2;
    return point;
}

double calculate_pslope(Point p1, Point p2) {
    double dy = p1.y - p2.y;
    double dx = p1.x - p2.x;
    double slope = dy/dx; // this is p1 <-> p2 slope

    return -1/slope;
}

int calculate_y_knowing_x(double pslope, Point center, double x, Point *point) {
    double min= 0.00;
    double max= 512.00;
    double y = (pslope * (x - center.x)) + center.y;

    if(y >= min && y <= max) {
        point->x = corner;
        point->y = y;
        printf("++> found Y for X, point is P(%f, %f)\n", point->x, point->y);
        return 1;
    }
    return 0;
}

int calculate_x_knowing_y(double pslope, Point center, double y, Point *point) {
    double min= 0.00;
    double max= 512.00;
    double x = (y - center.y + pslope*center.x)/pslope;

    if(x >= min && x <= max) {
        point->x = x;
        point->y = y;
        printf("++> found X for Y, point is: P(%f, %f)\n", point->x, point->y);
        return 1;
    }
    return 0;
}

int main(int argc, char **argv) {
    Point A, B;

    // parse argv and define A and B
    // this code is omitted here, let's assume:
    // A.x = 175.00;
    // A.y = 420.00;
    // B.x = 316.00;
    // B.y = 62.00;

    Point C;
    Point D;

    Point center;
    double pslope;

    center = calculate_center(A, B);
    pslope = calculate_pslope(A, B);

    // Here's where the fun happens:
    // I'll need to find the right succession of calls to calculate_*_knowing_* 
    // for 4 cases: x=0, X=512 #=> call calculate_y_knowing_x
    // y=0, y=512 #=> call calculate_x_knowing_y
    // and do this 2 times for both C and D points.
    // Also, if point C is found, point D should not be on the same side (thus C != D)

    // for the given A and B points the succession is:
    calculate_y_knowing_x(pslope, center, 0.00, C);
    calculate_y_knowing_x(pslope, center, 512.00, D);
    // will yield: C(0.00, 144.308659), D(512.00, 345.962291)

    // But if A(350.00, 314.00) and B(106.00, 109.00)
    // the succesion should be:
    // calculate_y_knowing_x(pslope, center, 0.00, C);
    // calculate_x_knowing_y(pslope, center, 512.00, D);
    // to yield C(0.00, 482.875610) and D(405.694672, 0.00)


    return 0;
}

这是C代码。

注意:

  • 图像是手工绘制的。
  • 坐标系旋转90°CCW,但不应对解决方案产生影响
  • 我正在寻找C中的算法,但我可以阅读其他编程语言
  • 这是2D问题

3 个答案:

答案 0 :(得分:3)

你有 CD 的等式(格式为(y - y0)= m(x - x0)),您可以将其转换为形式y = mx + c 。您也可以将其转换为 x =(1 / m)y - (c / m)的形式。

然后您只需找到 x = 0 x = 512 y = 0 y =的解决方案512

答案 1 :(得分:2)

我们从中心点C和AB方向开始,D:

C.x = (A.x+B.x) / 2
C.y = (A.y+B.y) / 2
D.x = (A.x-B.x) / 2
D.y = (A.y-B.y) / 2

然后如果P是线上的一个点,CP必须垂直于D.线的等式是:

DotProduct(P-C, D) = 0

CD = C.x*D.x + C.y*D.y
P.x * D.x + P.y * D.y - CD = 0

对于方形的四个边中的每一个,我们有一个等式:

P.x=0 -> P.y = CD / D.y
P.y=0 -> P.x = CD / D.x
P.x=512 -> P.y = (CD - 512*D.x) / D.y
P.y=512 -> P.x = (CD - 512*D.y) / D.x

除了2点重合的退化情况外,这4点中只有2个点的Px和Py都在0到512之间。你还需要检查特殊情况Dx = 0或Dy = 0。

答案 2 :(得分:2)

以下代码可以解决这个问题:

typedef struct { float x; float y; } Point;
typedef struct { Point point[2]; } Line;
typedef struct { Point origin; float width; float height; } Rect;
typedef struct { Point origin; Point direction; } Vector;

Point SolveVectorForX(Vector vector, float x)
{
    Point solution;
    solution.x = x;
    solution.y = vector.origin.y +
        (x - vector.origin.x)*vector.direction.y/vector.direction.x;
    return solution;
}

Point SolveVectorForY(Vector vector, float y)
{
    Point solution;
    solution.x = vector.origin.x +
        (y - vector.origin.y)*vector.direction.x/vector.direction.y;
    solution.y = y;
    return solution;
}

Line FindLineBisectorIntersectionWithRect(Rect rect, Line AB)
{
    Point A = AB.point[0];
    Point B = AB.point[1];
    int pointCount = 0;
    int testEdge = 0;
    Line result;
    Vector CD;

    // CD.origin = midpoint of line AB
    CD.origin.x = (A.x + B.x)/2.0;
    CD.origin.y = (A.y + B.y)/2.0;

    // CD.direction = negative inverse of AB.direction (perpendicular to AB)
    CD.direction.x = (B.y - A.y);
    CD.direction.y = (A.x - B.x);

    // for each edge of the rectangle, check:
    // 1. that an intersection with CD is possible (avoid division by zero)
    // 2. that the intersection point falls within the endpoints of the edge
    // 3. if both check out, use that point as one of the solution points
    while ((++testEdge <= 4) && (pointCount < 2))
    {
        Point point;

        switch (testEdge)
        {
            case 1: // check minimum x edge of rect
                if (CD.direction.x == 0) { continue; }
                point = SolveVectorForX(CD, rect.origin.x);
                if (point.y < rect.origin.y) { continue; }
                if (point.y > (rect.origin.y + rect.height)) { continue; }
                break;

            case 2: // check maximum x edge of rect
                if (CD.direction.x == 0) { continue; }
                point = SolveVectorForX(CD, rect.origin.x + rect.width);
                if (point.y < rect.origin.y) { continue; }
                if (point.y > (rect.origin.y + rect.height)) { continue; }
                break;

            case 3: // check minimum y edge of rect
                if (CD.direction.y == 0) { continue; }
                point = SolveVectorForY(CD, rect.origin.y);
                if (point.x < rect.origin.x) { continue; }
                if (point.x > (rect.origin.x + rect.width)) { continue; }
                break;

            case 4: // check maximum y edge of rect
                if (CD.direction.y == 0) { continue; }
                point = SolveVectorForY(CD, rect.origin.y + rect.height);
                if (point.x < rect.origin.x) { continue; }
                if (point.x > (rect.origin.x + rect.width)) { continue; }
                break;
        };

        // if we made it here, this point is one of the solution points
        result.point[pointCount++] = point;
    }

    // pointCount should always be 2
    assert(pointCount == 2);

    return result;
}