我正在尝试实现“单通道线框渲染”这篇论文,这看起来非常简单,但它给了我所期望的厚厚的黑暗值。
论文没有给出确切的代码来计算高度,所以我按照我认为合适的方式做了。代码应该将三个顶点投影到视口空间中,获取它们的“高度”并将它们发送到片段着色器。
片段着色器确定最近边缘的距离并生成edgeIntensity。我不确定我应该用这个值做什么,但因为它应该在[0,1]之间缩放,我将逆与我的外向颜色相乘,但它只是非常弱。
我有几个问题,我不确定在论文中是否已得到解决。首先,高度应该用2D而不是3D计算?其次,他们提供DirectX功能,其中DirectX具有不同的视口空间z范围,对吗?那有关系吗?我将输出的高度距离预先乘以视口空间坐标的w值,因为他们建议校正透视投影。
image trying to correct for perspective projection
no correction (not premultiplying by w-value)
未校正的图像似乎有明显的问题,不能纠正更偏向的侧面的视角,但经过视角校正的图像具有非常弱的值。
任何人都可以看到我的代码有什么问题或者如何从这里调试它?
我在GLSL中的顶点代码......
float altitude(in vec3 a, in vec3 b, in vec3 c) { // for an ABC triangle
vec3 ba = a - b;
vec3 bc = c - b;
vec3 ba_onto_bc = dot(ba,bc) * bc;
return(length(ba - ba_onto_bc));
}
in vec3 vertex; // incoming vertex
in vec3 v2; // first neighbor (CCW)
in vec3 v3; // second neighbor (CCW)
in vec4 color;
in vec3 normal;
varying vec3 worldPos;
varying vec3 worldNormal;
varying vec3 altitudes;
uniform mat4 objToWorld;
uniform mat4 cameraPV;
uniform mat4 normalToWorld;
void main() {
worldPos = (objToWorld * vec4(vertex,1.0)).xyz;
worldNormal = (normalToWorld * vec4(normal,1.0)).xyz;
//worldNormal = normal;
gl_Position = cameraPV * objToWorld * vec4(vertex,1.0);
// also put the neighboring polygons in viewport space
vec4 vv1 = gl_Position;
vec4 vv2 = cameraPV * objToWorld * vec4(v2,1.0);
vec4 vv3 = cameraPV * objToWorld * vec4(v3,1.0);
altitudes = vec3(vv1.w * altitude(vv1.xyz,vv2.xyz,vv3.xyz),
vv2.w * altitude(vv2.xyz,vv3.xyz,vv1.xyz),
vv3.w * altitude(vv3.xyz,vv1.xyz,vv2.xyz));
gl_FrontColor = color;
}
和我的片段代码......
varying vec3 worldPos;
varying vec3 worldNormal;
varying vec3 altitudes;
uniform vec3 cameraPos;
uniform vec3 lightDir;
uniform vec4 singleColor;
uniform float isSingleColor;
void main() {
// determine frag distance to closest edge
float d = min(min(altitudes.x, altitudes.y), altitudes.z);
float edgeIntensity = exp2(-2.0*d*d);
vec3 L = lightDir;
vec3 V = normalize(cameraPos - worldPos);
vec3 N = normalize(worldNormal);
vec3 H = normalize(L+V);
//vec4 color = singleColor;
vec4 color = isSingleColor*singleColor + (1.0-isSingleColor)*gl_Color;
//vec4 color = gl_Color;
float amb = 0.6;
vec4 ambient = color * amb;
vec4 diffuse = color * (1.0 - amb) * max(dot(L, N), 0.0);
vec4 specular = vec4(0.0);
gl_FragColor = (edgeIntensity * vec4(0.0)) + ((1.0-edgeIntensity) * vec4(ambient + diffuse + specular));
}
答案 0 :(得分:4)
我已经实现了猪的想法,结果很完美,这是我的截图:
struct MYBUFFEREDVERTEX {
float x, y, z;
float nx, ny, nz;
float u, v;
float bx, by, bz;
};
const MYBUFFEREDVERTEX g_vertex_buffer_data[] = {
-1.0f, -1.0f, 0.0f,
0.0f, 0.0f, 1.0f,
0.0f, 0.0f,
1.0f, 0.0f, 0.0f,
1.0f, -1.0f, 0.0f,
0.0f, 0.0f, 1.0f,
1.0f, 0.0f,
0.0f, 1.0f, 0.0f,
-1.0f, 1.0f, 0.0f,
0.0f, 0.0f, 1.0f,
0.0f, 1.0f,
0.0f, 0.0f, 1.0f,
1.0f, 1.0f, 0.0f,
0.0f, 0.0f, 1.0f,
1.0f, 1.0f,
1.0f, 0.0f, 0.0f,
};
glDrawArrays(GL_TRIANGLE_STRIP, 0, 4);
顶点着色器:
#ifdef GL_ES
// Set default precision to medium
precision mediump int;
precision mediump float;
#endif
uniform mat4 u_mvp_matrix;
uniform vec3 u_light_direction;
attribute vec3 a_position;
attribute vec3 a_normal;
attribute vec2 a_texcoord;
attribute vec3 a_barycentric;
varying vec2 v_texcoord;
varying float v_light_intensity;
varying vec3 v_barycentric;
void main()
{
// Calculate vertex position in screen space
gl_Position = u_mvp_matrix * vec4(a_position, 1.0);
// calculate light intensity, range of 0.3 ~ 1.0
v_light_intensity = max(dot(u_light_direction, a_normal), 0.3);
// Pass texture coordinate to fragment shader
v_texcoord = a_texcoord;
// Pass bary centric to fragment shader
v_barycentric = a_barycentric;
}
片段着色器:
#ifdef GL_ES
// Set default precision to medium
precision mediump int;
precision mediump float;
#endif
uniform sampler2D u_texture;
varying vec2 v_texcoord;
varying float v_light_intensity;
varying vec3 v_barycentric;
void main()
{
float min_dist = min(min(v_barycentric.x, v_barycentric.y), v_barycentric.z);
float edgeIntensity = 1.0 - step(0.005, min_dist);
// Set diffuse color from texture
vec4 diffuse = texture2D(u_texture, v_texcoord) * vec4(vec3(v_light_intensity), 1.0);
gl_FragColor = edgeIntensity * vec4(0.0, 1.0, 1.0, 1.0) + (1.0 - edgeIntensity) * diffuse;
}
答案 1 :(得分:3)
首先,你的函数altitude()是有缺陷的,ba_onto_bc被计算错误,因为bc不是单位长度(或者标准化bc,或者将ba_onto_bc除以dot(bc,bc),这是长度平方 - 你节省计算平方根)
如果你想要恒定厚度的边缘,高度应该用2D计算,如果你想要透视正确的边缘,则应该用3D计算。
使用重心坐标作为单独的顶点属性(即三角形的顶点0将得到(1 0 0),第二个顶点(0 1 0)和最后一个顶点(0 0 1)会更容易))。在片段着色器中,您将计算最小值并使用step()或smoothstep()来计算边缘值。
那只需要1个属性而不是当前的2个属性,并且它也不需要在顶点着色器中计算高度(尽管如果你想对重心坐标进行预定标以使你有均匀的粗线,这可能会很有用 - 但是离线计算)。它也应该立即起作用,这样才能达到理想的行为。