我有一个(非常大的)数据框,其中包含 w
不同 size
和语料库 f
话语中的命令:
df <- structure(list(size = c(2, 2, 3, 3, 4, 4, 3, 3),
w1 = c("come", "why", "er", "well", "i", "no", "that", "cos"),
w2 = c("on","that", "i", "not", "'m", "thanks", "'s", "she"),
w3 = c(NA, NA, "can", "today", "going", "a", "cool", "does"),
w4 = c(NA,NA, NA, NA, "home", "lot", NA, NA),
f1 = c(9699L, 6519L, 21345L, 35793L, 169024L, 39491L, 84682L, 11375L),
f2 = c(33821L, 84682L,169024L, 21362L, 14016L, 738L, 107729L, 33737L),
f3 = c(NA, NA, 15428L, 2419L, 10385L, 77328L, 132L, 7801L),
f4 = c(NA, NA, NA, NA, 2714L, 3996L, NA, NA)),
row.names = c(NA, -8L), class = "data.frame")
我需要计算不同列数的不同 size
组的平均值。我可以通过size
做到size
,就像这样,例如对于size == 2
:
# calculate numbers of rows per size group:
RowsPerSize <- table(df$size)
# make size subset:
df_size2 <- df[df$size == 2,]
# calculate average `f`requencies per `size`:
AvFreqSize_2 <- apply(df_size2[,6:7], 2, function(x) sum(x, na.rm = T)/RowsPerSize[1])
# result:
AvFreqSize_2
f1 f2
8109.0 59251.5
但这对于单个 size
来说已经很麻烦了,对于多个 size
来说更是如此。我很确定有一种更经济的方式,可能在 dplyr
,您可以group_by
。一个不起眼的开始是这样的:
df %>%
group_by(size) %>%
summarise(freq = n())
# A tibble: 3 x 2
size freq
* <dbl> <int>
1 2 2
2 3 4
3 4 2
答案 0 :(得分:1)
我猜了很多,但我认为您正在寻找这个:
library(tidyverse)
df %>%
group_by(size) %>%
summarise(across(matches("f\\d"), ~sum(.x, na.rm = T)/n()))
#> # A tibble: 3 x 5
#> size f1 f2 f3 f4
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2 8109 59252. 0 0
#> 2 3 38299. 82963 6445 0
#> 3 4 104258. 7377 43856. 3355
#as @Onyambu suggested, it could make more sense to use `mean()`
df %>%
group_by(size) %>%
summarise(across(matches("f\\d"), ~mean(.x, na.rm = T)))
#> # A tibble: 3 x 5
#> size f1 f2 f3 f4
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 2 8109 59252. NaN NaN
#> 2 3 38299. 82963 6445 NaN
#> 3 4 104258. 7377 43856. 3355
由 reprex package (v2.0.0) 于 2021 年 5 月 6 日创建