我是HTML5 Canvas和JavaScript的新手,但有一种简单的方法可以在HTML5 Canvas元素中进行等距投影吗?
我的意思是真正的等距投影 - http://en.wikipedia.org/wiki/Isometric_projection
感谢大家的回复。
答案 0 :(得分:11)
首先,我建议将游戏世界视为Y平方正方形瓷砖的常规X.这使得从碰撞检测,寻路甚至渲染的所有内容变得更加容易。
要在等轴测投影中渲染地图,只需修改投影矩阵:
var ctx = canvas.getContext('2d');
function render(ctx) {
var dx = 0, dy = 0;
ctx.save();
// change projection to isometric view
ctx.translate(view.x, view.y);
ctx.scale(1, 0.5);
ctx.rotate(45 * Math.PI /180);
for (var y = 0; i < 10; y++) {
for (var x = 0; x < 10; x++) {
ctx.strokeRect(dx, dy, 40, 40);
dx += 40;
}
dx = 0;
dy += 40;
}
ctx.restore(); // back to orthogonal projection
// Now, figure out which tile is under the mouse cursor... :)
}
这是第一次让它工作时令人兴奋,但你会很快意识到它对于绘制实际等距地图并不是那么有用......你不能只是旋转你的瓷砖图像,看看附近有什么。转换不是用于绘制,而是用于在屏幕空间和世界空间之间进行转换。
奖励:找出鼠标在哪个区块上
您要做的是将“视图坐标”(从画布原点的像素偏移)转换为“世界坐标”(沿着对角轴的平铺0,0 的像素偏移)。然后简单地用瓦片宽度和高度划分世界坐标以获得“地图坐标”。
理论上,您需要做的就是通过上面投影矩阵的逆投影“视图位置”向量,以获得“世界位置”。我在理论上说,因为由于某种原因,画布不提供返回当前投影矩阵的方法。有一个setTransform()
方法,但没有getTransform()
,所以这是你必须推出自己的3x3转换矩阵的地方。
实际上并不是那么难,在绘制对象时,您需要使用它来在世界和视图坐标之间进行转换。
希望这有帮助。
答案 1 :(得分:5)
处理轴测(通常称为等距)渲染的最佳方法是通过投影矩阵。
如下所示的投影对象可以描述您进行任何形式的轴测投影所需的一切
对象有x,y和z轴的3个变换,每个变换描述x,y,z坐标的2D投影中的比例和方向。深度计算的变换和画布像素中的原点(如果是setTransform(1,0,0,1,0,0)或画布的当前变换)
要投射点调用函数axoProjMat({x=10,y=10,z=10})
,它将返回带有x的3D点,y是顶点的2D坐标,z是深度(深度值接近视图的深度值(与3D透视相反)投影));
// 3d 2d points
const P3 = (x=0, y=0, z=0) => ({x,y,z});
const P2 = (x=0, y=0) => ({x, y});
// projection object
const axoProjMat = {
xAxis : P2(1 , 0.5) ,
yAxis : P2(-1 , 0.5) ,
zAxis : P2(0 , -1) ,
depth : P3(0.5,0.5,1) , // projections have z as depth
origin : P2(), // (0,0) default 2D point
setProjection(name){
if(projTypes[name]){
Object.keys(projTypes[name]).forEach(key => {
this[key]=projTypes[name][key];
})
if(!projTypes[name].depth){
this.depth = P3(
this.xAxis.y,
this.yAxis.y,
-this.zAxis.y
);
}
}
},
project (p, retP = P3()) {
retP.x = p.x * this.xAxis.x + p.y * this.yAxis.x + p.z * this.zAxis.x + this.origin.x;
retP.y = p.x * this.xAxis.y + p.y * this.yAxis.y + p.z * this.zAxis.y + this.origin.y;
retP.z = p.x * this.depth.x + p.y * this.depth.y + p.z * this.depth.z;
return retP;
}
}
使用上述对象,您可以使用函数axoProjMat.setProjection(name)
来选择投影类型。
以下是wiki Axonometric projections上列出的相关投影类型,以及像素艺术和游戏中常用的两种修改(以Pixel为前缀)。使用axoProjMat.setProjection(name)
,其中name是projTypes
属性名称之一。
const D2R = (ang) => (ang-90) * (Math.PI/180 );
const Ang2Vec = (ang,len = 1) => P2(Math.cos(D2R(ang)) * len,Math.sin(D2R(ang)) * len);
const projTypes = {
PixelBimetric : {
xAxis : P2(1 , 0.5) ,
yAxis : P2(-1 , 0.5) ,
zAxis : P2(0 , -1) ,
depth : P3(0.5,0.5,1) , // projections have z as depth
},
PixelTrimetric : {
xAxis : P2(1 , 0.5) ,
yAxis : P2(-0.5 , 1) ,
zAxis : P2(0 , -1) ,
depth : P3(0.5,1,1) ,
},
Isometric : {
xAxis : Ang2Vec(120) ,
yAxis : Ang2Vec(-120) ,
zAxis : Ang2Vec(0) ,
},
Bimetric : {
xAxis : Ang2Vec(116.57) ,
yAxis : Ang2Vec(-116.57) ,
zAxis : Ang2Vec(0) ,
},
Trimetric : {
xAxis : Ang2Vec(126.87,2/3) ,
yAxis : Ang2Vec(-104.04) ,
zAxis : Ang2Vec(0) ,
},
Military : {
xAxis : Ang2Vec(135) ,
yAxis : Ang2Vec(-135) ,
zAxis : Ang2Vec(0) ,
},
Cavalier : {
xAxis : Ang2Vec(135) ,
yAxis : Ang2Vec(-90) ,
zAxis : Ang2Vec(0) ,
},
TopDown : {
xAxis : Ang2Vec(180) ,
yAxis : Ang2Vec(-90) ,
zAxis : Ang2Vec(0) ,
}
}
该片段是一个简单的示例,投影设置为Isometric
,详见OP问题中的wiki链接并使用上述函数和对象。
const ctx = canvas.getContext("2d");
// function creates a 3D point (vertex)
function vertex(x, y, z) { return { x, y, z}};
// an array of vertices
const vertices = []; // an array of vertices
// create the 8 vertices that make up a box
const boxSize = 20; // size of the box
const hs = boxSize / 2; // half size shorthand for easier typing
vertices.push(vertex(-hs, -hs, -hs)); // lower top left index 0
vertices.push(vertex(hs, -hs, -hs)); // lower top right
vertices.push(vertex(hs, hs, -hs)); // lower bottom right
vertices.push(vertex(-hs, hs, -hs)); // lower bottom left
vertices.push(vertex(-hs, -hs, hs)); // upper top left index 4
vertices.push(vertex(hs, -hs, hs)); // upper top right
vertices.push(vertex(hs, hs, hs)); // upper bottom right
vertices.push(vertex(-hs, hs, hs)); // upper bottom left index 7
const colours = {
dark: "#040",
shade: "#360",
light: "#ad0",
bright: "#ee0",
}
function createPoly(indexes, colour) {
return {
indexes,
colour
}
}
const polygons = [];
polygons.push(createPoly([1, 2, 6, 5], colours.shade)); // right face
polygons.push(createPoly([2, 3, 7, 6], colours.light)); // front face
polygons.push(createPoly([4, 5, 6, 7], colours.bright)); // top face
// From here in I use P2,P3 to create 2D and 3D points
const P3 = (x = 0, y = 0, z = 0) => ({x,y,z});
const P2 = (x = 0, y = 0) => ({ x, y});
const D2R = (ang) => (ang-90) * (Math.PI/180 );
const Ang2Vec = (ang,len = 1) => P2(Math.cos(D2R(ang)) * len,Math.sin(D2R(ang)) * len);
const projTypes = {
PixelBimetric : {
xAxis : P2(1 , 0.5) ,
yAxis : P2(-1 , 0.5) ,
zAxis : P2(0 , -1) ,
depth : P3(0.5,0.5,1) , // projections have z as depth
},
PixelTrimetric : {
xAxis : P2(1 , 0.5) ,
yAxis : P2(-0.5 , 1) ,
zAxis : P2(0 , -1) ,
depth : P3(0.5,1,1) ,
},
Isometric : {
xAxis : Ang2Vec(120) ,
yAxis : Ang2Vec(-120) ,
zAxis : Ang2Vec(0) ,
},
Bimetric : {
xAxis : Ang2Vec(116.57) ,
yAxis : Ang2Vec(-116.57) ,
zAxis : Ang2Vec(0) ,
},
Trimetric : {
xAxis : Ang2Vec(126.87,2/3) ,
yAxis : Ang2Vec(-104.04) ,
zAxis : Ang2Vec(0) ,
},
Military : {
xAxis : Ang2Vec(135) ,
yAxis : Ang2Vec(-135) ,
zAxis : Ang2Vec(0) ,
},
Cavalier : {
xAxis : Ang2Vec(135) ,
yAxis : Ang2Vec(-90) ,
zAxis : Ang2Vec(0) ,
},
TopDown : {
xAxis : Ang2Vec(180) ,
yAxis : Ang2Vec(-90) ,
zAxis : Ang2Vec(0) ,
}
}
const axoProjMat = {
xAxis : P2(1 , 0.5) ,
yAxis : P2(-1 , 0.5) ,
zAxis : P2(0 , -1) ,
depth : P3(0.5,0.5,1) , // projections have z as depth
origin : P2(150,65), // (0,0) default 2D point
setProjection(name){
if(projTypes[name]){
Object.keys(projTypes[name]).forEach(key => {
this[key]=projTypes[name][key];
})
if(!projTypes[name].depth){
this.depth = P3(
this.xAxis.y,
this.yAxis.y,
-this.zAxis.y
);
}
}
},
project (p, retP = P3()) {
retP.x = p.x * this.xAxis.x + p.y * this.yAxis.x + p.z * this.zAxis.x + this.origin.x;
retP.y = p.x * this.xAxis.y + p.y * this.yAxis.y + p.z * this.zAxis.y + this.origin.y;
retP.z = p.x * this.depth.x + p.y * this.depth.y + p.z * this.depth.z;
return retP;
}
}
axoProjMat.setProjection("Isometric");
var x,y,z;
for(z = 0; z < 4; z++){
const hz = z/2;
for(y = hz; y < 4-hz; y++){
for(x = hz; x < 4-hz; x++){
// move the box
const translated = vertices.map(vert => {
return P3(
vert.x + x * boxSize,
vert.y + y * boxSize,
vert.z + z * boxSize,
);
});
// create a new array of 2D projected verts
const projVerts = translated.map(vert => axoProjMat.project(vert));
// and render
polygons.forEach(poly => {
ctx.fillStyle = poly.colour;
ctx.strokeStyle = poly.colour;
ctx.lineWidth = 1;
ctx.beginPath();
poly.indexes.forEach(index => ctx.lineTo(projVerts[index].x , projVerts[index].y));
ctx.stroke();
ctx.fill();
});
}
}
}
canvas {
border: 2px solid black;
}
body { font-family: arial; }
True Isometric projection. With x at 120deg, and y at -120deg from up.<br>
<canvas id="canvas"></canvas>
答案 2 :(得分:-1)
我为我的等距应用程序创建了这样的东西
class IsoProjection {
constructor() {
this.matP = [1, 0, 0, 1, 0, 0];
this.matI = [1, 0, 0, 1, 0, 0];
this.mapRatio = 1;
this.mapRatioI = 1;
}
isoToTilePos(a, ao) {
let m = this.matI,
b = ao || [],
i = 0,
j = 1;
do {
j = i + 1;
b[i] = a[i] * m[0] + a[j] * m[2] + m[4];
b[j] = a[i] * m[1] + a[j] * m[3] + m[5];
i += 2;
} while (i < a.length);
return b;
}
tileToIsoPos(a, ao) {
let m = this.matP,
b = ao || [],
i = 0,
j = 1;
do {
j = i + 1;
b[i] = a[i] * m[0] + a[j] * m[2] + m[4];
b[j] = a[i] * m[1] + a[j] * m[3] + m[5];
i += 2;
} while (i < a.length);
return b;
}
reset(numC, numR, cellW, cellH) {
/*
Math.sqrt(2 * isoW * isoW) = cellW
isoW = Math.sqrt(cellW * cellW / 2);
while map's tileW = 1
*/
let isoW = Math.sqrt(cellW * cellW / 2);
this.mapRatio = isoW;
this.mapRatioI = 1 / isoW;
// translation
let ctr = Math.max(numC, numR) / 2;
//rotation
let rot = -Math.PI / 4;
let cos = Math.cos(rot);
let sin = Math.sin(rot);
// scale
let sx = isoW;
let sy = cellH / cellW * isoW;
// the matrix
this.matP[0] = sx * cos;
this.matP[1] = sy * sin;
this.matP[2] = sx * -sin;
this.matP[3] = sy * cos;
this.matP[4] = 0;
this.matP[5] = 0;
// the inverted matrix;
let a = this.matP[0],
b = this.matP[1],
c = this.matP[2],
d = this.matP[3],
e = this.matP[4],
f = this.matP[5];
let det = a * d - b * c;
if (det !== 0) {
det = 1 / det;
this.matI[0] = d * det;
this.matI[1] = - b * det;
this.matI[2] = - c * det;
this.matI[3] = a * det;
this.matI[4] = (c * f - e * d) * det;
this.matI[5] = (e * b - a * f) * det;
} else {
this.matI[0] = a;
this.matI[1] = b;
this.matI[2] = c;
this.matI[3] = d;
this.matI[4] = e;
this.matI[5] = f;
}
return this;
}
}