在numpy数组中插入NaN值

时间:2011-06-29 09:58:44

标签: python numpy interpolation nan

是否有一种快速方法可以用(例如)线性插值替换numpy数组中的所有NaN值?

例如,

[1 1 1 nan nan 2 2 nan 0]

将转换为

[1 1 1 1.3 1.6 2 2  1  0]

11 个答案:

答案 0 :(得分:82)

让我们首先定义一个简单的辅助函数,以便更简单地处理NaNs的索引和逻辑索引:

import numpy as np

def nan_helper(y):
    """Helper to handle indices and logical indices of NaNs.

    Input:
        - y, 1d numpy array with possible NaNs
    Output:
        - nans, logical indices of NaNs
        - index, a function, with signature indices= index(logical_indices),
          to convert logical indices of NaNs to 'equivalent' indices
    Example:
        >>> # linear interpolation of NaNs
        >>> nans, x= nan_helper(y)
        >>> y[nans]= np.interp(x(nans), x(~nans), y[~nans])
    """

    return np.isnan(y), lambda z: z.nonzero()[0]

现在可以使用nan_helper(.),如:

>>> y= array([1, 1, 1, NaN, NaN, 2, 2, NaN, 0])
>>>
>>> nans, x= nan_helper(y)
>>> y[nans]= np.interp(x(nans), x(~nans), y[~nans])
>>>
>>> print y.round(2)
[ 1.    1.    1.    1.33  1.67  2.    2.    1.    0.  ]

<强> ---
虽然指定一个单独的函数来执行这样的事情似乎有点过分:

>>> nans, x= np.isnan(y), lambda z: z.nonzero()[0]
它最终会带来红利。

因此,无论何时使用NaNs相关数据,只需在一些特定的辅助函数下封装所需的所有(新的NaN相关)功能。您的代码库将更加连贯和可读,因为它遵循易于理解的习语。

插值确实是一个很好的背景,可以看到NaN处理是如何完成的,但类似的技术也被用于各种其他环境中。

答案 1 :(得分:22)

我想出了这段代码:

import numpy as np
nan = np.nan

A = np.array([1, nan, nan, 2, 2, nan, 0])

ok = -np.isnan(A)
xp = ok.ravel().nonzero()[0]
fp = A[-np.isnan(A)]
x  = np.isnan(A).ravel().nonzero()[0]

A[np.isnan(A)] = np.interp(x, xp, fp)

print A

打印

 [ 1.          1.33333333  1.66666667  2.          2.          1.          0.        ]

答案 2 :(得分:8)

只需使用numpy logical和where where语句来应用1D插值。

import numpy as np
from scipy import interpolate

def fill_nan(A):
    '''
    interpolate to fill nan values
    '''
    inds = np.arange(A.shape[0])
    good = np.where(np.isfinite(A))
    f = interpolate.interp1d(inds[good], A[good],bounds_error=False)
    B = np.where(np.isfinite(A),A,f(inds))
    return B

答案 3 :(得分:5)

首先可能更容易更改数据的生成方式,但如果不是:

bad_indexes = np.isnan(data)

创建一个布尔数组,指示nans的位置

good_indexes = np.logical_not(bad_indexes)

创建一个布尔数组,指示好值区域

的位置
good_data = data[good_indexes]

原始数据的限制版本,不包括nans

interpolated = np.interp(bad_indexes.nonzero(), good_indexes.nonzero(), good_data)

通过插值运行所有坏索引

data[bad_indexes] = interpolated

用插值替换原始数据。

答案 4 :(得分:4)

或建立温斯顿的答案

def pad(data):
    bad_indexes = np.isnan(data)
    good_indexes = np.logical_not(bad_indexes)
    good_data = data[good_indexes]
    interpolated = np.interp(bad_indexes.nonzero()[0], good_indexes.nonzero()[0], good_data)
    data[bad_indexes] = interpolated
    return data

A = np.array([[1, 20, 300],
              [nan, nan, nan],
              [3, 40, 500]])

A = np.apply_along_axis(pad, 0, A)
print A

结果

[[   1.   20.  300.]
 [   2.   30.  400.]
 [   3.   40.  500.]]

答案 5 :(得分:3)

对于二维数据,SciPy的griddata对我来说效果很好:

>>> import numpy as np
>>> from scipy.interpolate import griddata
>>>
>>> # SETUP
>>> a = np.arange(25).reshape((5, 5)).astype(float)
>>> a
array([[  0.,   1.,   2.,   3.,   4.],
       [  5.,   6.,   7.,   8.,   9.],
       [ 10.,  11.,  12.,  13.,  14.],
       [ 15.,  16.,  17.,  18.,  19.],
       [ 20.,  21.,  22.,  23.,  24.]])
>>> a[np.random.randint(2, size=(5, 5)).astype(bool)] = np.NaN
>>> a
array([[ nan,  nan,  nan,   3.,   4.],
       [ nan,   6.,   7.,  nan,  nan],
       [ 10.,  nan,  nan,  13.,  nan],
       [ 15.,  16.,  17.,  nan,  19.],
       [ nan,  nan,  22.,  23.,  nan]])
>>>
>>> # THE INTERPOLATION
>>> x, y = np.indices(a.shape)
>>> interp = np.array(a)
>>> interp[np.isnan(interp)] = griddata(
...     (x[~np.isnan(a)], y[~np.isnan(a)]), # points we know
...     a[~np.isnan(a)],                    # values we know
...     (x[np.isnan(a)], y[np.isnan(a)]))   # points to interpolate
>>> interp
array([[ nan,  nan,  nan,   3.,   4.],
       [ nan,   6.,   7.,   8.,   9.],
       [ 10.,  11.,  12.,  13.,  14.],
       [ 15.,  16.,  17.,  18.,  19.],
       [ nan,  nan,  22.,  23.,  nan]])

我在3D图像上使用它,在2D切片(4000片350x350)上操作。整个操作大约需要一个小时:/

答案 6 :(得分:3)

我需要一种在数据结尾处填写NaN的方法,但主要答案似乎没有。

我提出的功能使用线性回归来填充NaN。这克服了我的问题:

import numpy as np

def linearly_interpolate_nans(y):
    # Fit a linear regression to the non-nan y values

    # Create X matrix for linreg with an intercept and an index
    X = np.vstack((np.ones(len(y)), np.arange(len(y))))

    # Get the non-NaN values of X and y
    X_fit = X[:, ~np.isnan(y)]
    y_fit = y[~np.isnan(y)].reshape(-1, 1)

    # Estimate the coefficients of the linear regression
    beta = np.linalg.lstsq(X_fit.T, y_fit)[0]

    # Fill in all the nan values using the predicted coefficients
    y.flat[np.isnan(y)] = np.dot(X[:, np.isnan(y)].T, beta)
    return y

以下是一个示例用例:

# Make an array according to some linear function
y = np.arange(12) * 1.5 + 10.

# First and last value are NaN
y[0] = np.nan
y[-1] = np.nan

# 30% of other values are NaN
for i in range(len(y)):
    if np.random.rand() > 0.7:
        y[i] = np.nan

# NaN's are filled in!
print (y)
print (linearly_interpolate_nans(y))

答案 7 :(得分:2)

Bryan Woods的答案的基础上,我修改了他的代码,以便将仅包含NaN的列表转换为零列表:

def fill_nan(A):
    '''
    interpolate to fill nan values
    '''
    inds = np.arange(A.shape[0])
    good = np.where(np.isfinite(A))
    if len(good[0]) == 0:
        return np.nan_to_num(A)
    f = interp1d(inds[good], A[good], bounds_error=False)
    B = np.where(np.isfinite(A), A, f(inds))
    return B

简单的补充,我希望它对某人有用。

答案 8 :(得分:1)

基于BRYAN WOODS的响应的优化版本。它可以正确处理源数据的开始和结束值,并且速度比原始版本快25-30%。另外,您可以使用不同种类的插值(有关详细信息,请参见scipy.interpolate.interp1d文档)。

import numpy as np
from scipy.interpolate import interp1d

def fill_nans_scipy1(padata, pkind='linear'):
"""
Interpolates data to fill nan values

Parameters:
    padata : nd array 
        source data with np.NaN values

Returns:
    nd array 
        resulting data with interpolated values instead of nans
"""
aindexes = np.arange(padata.shape[0])
agood_indexes, = np.where(np.isfinite(padata))
f = interp1d(agood_indexes
           , padata[agood_indexes]
           , bounds_error=False
           , copy=False
           , fill_value="extrapolate"
           , kind=pkind)
return f(aindexes)

答案 9 :(得分:0)

使用填充关键字进行插值和外插

如果两侧都存在有限值,则以下解决方案通过 np.interp 在数组中插入 nan 值边界处的Nan 值np.padconstantreflect 等模式处理。

enter image description here

    import numpy as np
    import matplotlib.pyplot as plt
    
    
    def extrainterpolate_nans_1d(
            arr, kws_pad=({'mode': 'edge'}, {'mode': 'edge'})
            ):
        """Interpolates and extrapolates nan values.
    
        Interpolation is linear, compare np.interp(..).
        Extrapolation works with pad keywords, compare np.pad(..).
    
        Parameters
        ----------
        arr : np.ndarray, shape (N,)
            Array to replace nans in.
        kws_pad : dict or (dict, dict)
            kwargs for np.pad on left and right side
    
        Returns
        -------
        bool
            Description of return value
    
        See Also
        --------
        https://numpy.org/doc/stable/reference/generated/numpy.interp.html
        https://numpy.org/doc/stable/reference/generated/numpy.pad.html
        https://stackoverflow.com/a/43821453/7128154
        """
        assert arr.ndim == 1
        if isinstance(kws_pad, dict):
            kws_pad_left = kws_pad
            kws_pad_right = kws_pad
        else:
            assert len(kws_pad) == 2
            assert isinstance(kws_pad[0], dict)
            assert isinstance(kws_pad[1], dict)
            kws_pad_left = kws_pad[0]
            kws_pad_right = kws_pad[1]
    
        arr_ip = arr.copy()
    
        # interpolation
        inds = np.arange(len(arr_ip))
        nan_msk = np.isnan(arr_ip)
        arr_ip[nan_msk] = np.interp(inds[nan_msk], inds[~nan_msk], arr[~nan_msk])
    
        # detemine pad range
        i0 = next(
            (ids for ids, val in np.ndenumerate(arr) if not np.isnan(val)), 0)[0]
        i1 = next(
            (ids for ids, val in np.ndenumerate(arr[::-1]) if not np.isnan(val)), 0)[0]
        i1 = len(arr) - i1
        # print('pad in range [0:{:}] and [{:}:{:}]'.format(i0, i1, len(arr)))
    
        # pad
        arr_pad = np.pad(
            arr_ip[i0:], pad_width=[(i0, 0)], **kws_pad_left)
        arr_pad = np.pad(
            arr_pad[:i1], pad_width=[(0, len(arr) - i1)], **kws_pad_right)
    
        return arr_pad
    
    
    # setup data
    ys = np.arange(30, dtype=float)**2/20
    ys[:5] = np.nan
    ys[20:] = 20
    ys[28:] = np.nan
    ys[[7, 13, 14, 18, 22]] = np.nan
    
    
    ys_ie0 = extrainterpolate_nans_1d(ys)
    kws_pad_sym = {'mode': 'symmetric'}
    kws_pad_const7 = {'mode': 'constant', 'constant_values':7.}
    ys_ie1 = extrainterpolate_nans_1d(ys, kws_pad=(kws_pad_sym, kws_pad_const7))
    ys_ie2 = extrainterpolate_nans_1d(ys, kws_pad=(kws_pad_const7, kws_pad_sym))
    
    fig, ax = plt.subplots()
    
    
    ax.scatter(np.arange(len(ys)), ys, s=15**2, label='ys')
    ax.scatter(np.arange(len(ys)), ys_ie0, s=8**2, label='ys_ie0, left_pad edge, right_pad edge')
    ax.scatter(np.arange(len(ys)), ys_ie1, s=6**2, label='ys_ie1, left_pad symmetric, right_pad 7')
    ax.scatter(np.arange(len(ys)), ys_ie2, s=4**2, label='ys_ie2, left_pad 7, right_pad symmetric')
    ax.legend()

答案 10 :(得分:0)

正如之前的评论所建议的那样,最好的方法是使用同行评审的实现。 pandas 库有一个一维数据的插值方法,可以在 np.nanSeries 中插值 DataFrame 值:

pandas.Series.interpolatepandas.DataFrame.interpolate

文档很简洁,推荐通读!我的实现:

import pandas as pd

magnitudes_series = pd.Series(magnitudes)    # Convert np.array to pd.Series
magnitudes_series.interpolate(
    # I used "akima" because the second derivative of my data has frequent drops to 0
    method=interpolation_method,

    # Interpolate from both sides of the sequence, up to you (made sense for my data)
    limit_direction="both",

    # Interpolate only np.nan sequences that have number sequences at the ends of the respective np.nan sequences
    limit_area="inside",

    inplace=True,
)

# I chose to remove np.nan at the tails of data sequence
magnitudes_series.dropna(inplace=True)

result_in_numpy_array = magnitudes_series.values