是否有一种快速方法可以用(例如)线性插值替换numpy数组中的所有NaN值?
例如,
[1 1 1 nan nan 2 2 nan 0]
将转换为
[1 1 1 1.3 1.6 2 2 1 0]
答案 0 :(得分:82)
让我们首先定义一个简单的辅助函数,以便更简单地处理NaNs的索引和逻辑索引:
import numpy as np
def nan_helper(y):
"""Helper to handle indices and logical indices of NaNs.
Input:
- y, 1d numpy array with possible NaNs
Output:
- nans, logical indices of NaNs
- index, a function, with signature indices= index(logical_indices),
to convert logical indices of NaNs to 'equivalent' indices
Example:
>>> # linear interpolation of NaNs
>>> nans, x= nan_helper(y)
>>> y[nans]= np.interp(x(nans), x(~nans), y[~nans])
"""
return np.isnan(y), lambda z: z.nonzero()[0]
现在可以使用nan_helper(.)
,如:
>>> y= array([1, 1, 1, NaN, NaN, 2, 2, NaN, 0])
>>>
>>> nans, x= nan_helper(y)
>>> y[nans]= np.interp(x(nans), x(~nans), y[~nans])
>>>
>>> print y.round(2)
[ 1. 1. 1. 1.33 1.67 2. 2. 1. 0. ]
<强> --- 强>
虽然指定一个单独的函数来执行这样的事情似乎有点过分:
>>> nans, x= np.isnan(y), lambda z: z.nonzero()[0]
它最终会带来红利。
因此,无论何时使用NaNs相关数据,只需在一些特定的辅助函数下封装所需的所有(新的NaN相关)功能。您的代码库将更加连贯和可读,因为它遵循易于理解的习语。
插值确实是一个很好的背景,可以看到NaN处理是如何完成的,但类似的技术也被用于各种其他环境中。
答案 1 :(得分:22)
我想出了这段代码:
import numpy as np
nan = np.nan
A = np.array([1, nan, nan, 2, 2, nan, 0])
ok = -np.isnan(A)
xp = ok.ravel().nonzero()[0]
fp = A[-np.isnan(A)]
x = np.isnan(A).ravel().nonzero()[0]
A[np.isnan(A)] = np.interp(x, xp, fp)
print A
打印
[ 1. 1.33333333 1.66666667 2. 2. 1. 0. ]
答案 2 :(得分:8)
只需使用numpy logical和where where语句来应用1D插值。
import numpy as np
from scipy import interpolate
def fill_nan(A):
'''
interpolate to fill nan values
'''
inds = np.arange(A.shape[0])
good = np.where(np.isfinite(A))
f = interpolate.interp1d(inds[good], A[good],bounds_error=False)
B = np.where(np.isfinite(A),A,f(inds))
return B
答案 3 :(得分:5)
首先可能更容易更改数据的生成方式,但如果不是:
bad_indexes = np.isnan(data)
创建一个布尔数组,指示nans的位置
good_indexes = np.logical_not(bad_indexes)
创建一个布尔数组,指示好值区域
的位置good_data = data[good_indexes]
原始数据的限制版本,不包括nans
interpolated = np.interp(bad_indexes.nonzero(), good_indexes.nonzero(), good_data)
通过插值运行所有坏索引
data[bad_indexes] = interpolated
用插值替换原始数据。
答案 4 :(得分:4)
或建立温斯顿的答案
def pad(data):
bad_indexes = np.isnan(data)
good_indexes = np.logical_not(bad_indexes)
good_data = data[good_indexes]
interpolated = np.interp(bad_indexes.nonzero()[0], good_indexes.nonzero()[0], good_data)
data[bad_indexes] = interpolated
return data
A = np.array([[1, 20, 300],
[nan, nan, nan],
[3, 40, 500]])
A = np.apply_along_axis(pad, 0, A)
print A
结果
[[ 1. 20. 300.]
[ 2. 30. 400.]
[ 3. 40. 500.]]
答案 5 :(得分:3)
对于二维数据,SciPy的griddata
对我来说效果很好:
>>> import numpy as np
>>> from scipy.interpolate import griddata
>>>
>>> # SETUP
>>> a = np.arange(25).reshape((5, 5)).astype(float)
>>> a
array([[ 0., 1., 2., 3., 4.],
[ 5., 6., 7., 8., 9.],
[ 10., 11., 12., 13., 14.],
[ 15., 16., 17., 18., 19.],
[ 20., 21., 22., 23., 24.]])
>>> a[np.random.randint(2, size=(5, 5)).astype(bool)] = np.NaN
>>> a
array([[ nan, nan, nan, 3., 4.],
[ nan, 6., 7., nan, nan],
[ 10., nan, nan, 13., nan],
[ 15., 16., 17., nan, 19.],
[ nan, nan, 22., 23., nan]])
>>>
>>> # THE INTERPOLATION
>>> x, y = np.indices(a.shape)
>>> interp = np.array(a)
>>> interp[np.isnan(interp)] = griddata(
... (x[~np.isnan(a)], y[~np.isnan(a)]), # points we know
... a[~np.isnan(a)], # values we know
... (x[np.isnan(a)], y[np.isnan(a)])) # points to interpolate
>>> interp
array([[ nan, nan, nan, 3., 4.],
[ nan, 6., 7., 8., 9.],
[ 10., 11., 12., 13., 14.],
[ 15., 16., 17., 18., 19.],
[ nan, nan, 22., 23., nan]])
我在3D图像上使用它,在2D切片(4000片350x350)上操作。整个操作大约需要一个小时:/
答案 6 :(得分:3)
我需要一种在数据结尾处填写NaN的方法,但主要答案似乎没有。
我提出的功能使用线性回归来填充NaN。这克服了我的问题:
import numpy as np
def linearly_interpolate_nans(y):
# Fit a linear regression to the non-nan y values
# Create X matrix for linreg with an intercept and an index
X = np.vstack((np.ones(len(y)), np.arange(len(y))))
# Get the non-NaN values of X and y
X_fit = X[:, ~np.isnan(y)]
y_fit = y[~np.isnan(y)].reshape(-1, 1)
# Estimate the coefficients of the linear regression
beta = np.linalg.lstsq(X_fit.T, y_fit)[0]
# Fill in all the nan values using the predicted coefficients
y.flat[np.isnan(y)] = np.dot(X[:, np.isnan(y)].T, beta)
return y
以下是一个示例用例:
# Make an array according to some linear function
y = np.arange(12) * 1.5 + 10.
# First and last value are NaN
y[0] = np.nan
y[-1] = np.nan
# 30% of other values are NaN
for i in range(len(y)):
if np.random.rand() > 0.7:
y[i] = np.nan
# NaN's are filled in!
print (y)
print (linearly_interpolate_nans(y))
答案 7 :(得分:2)
在Bryan Woods的答案的基础上,我修改了他的代码,以便将仅包含NaN
的列表转换为零列表:
def fill_nan(A):
'''
interpolate to fill nan values
'''
inds = np.arange(A.shape[0])
good = np.where(np.isfinite(A))
if len(good[0]) == 0:
return np.nan_to_num(A)
f = interp1d(inds[good], A[good], bounds_error=False)
B = np.where(np.isfinite(A), A, f(inds))
return B
简单的补充,我希望它对某人有用。
答案 8 :(得分:1)
基于BRYAN WOODS的响应的优化版本。它可以正确处理源数据的开始和结束值,并且速度比原始版本快25-30%。另外,您可以使用不同种类的插值(有关详细信息,请参见scipy.interpolate.interp1d文档)。
import numpy as np
from scipy.interpolate import interp1d
def fill_nans_scipy1(padata, pkind='linear'):
"""
Interpolates data to fill nan values
Parameters:
padata : nd array
source data with np.NaN values
Returns:
nd array
resulting data with interpolated values instead of nans
"""
aindexes = np.arange(padata.shape[0])
agood_indexes, = np.where(np.isfinite(padata))
f = interp1d(agood_indexes
, padata[agood_indexes]
, bounds_error=False
, copy=False
, fill_value="extrapolate"
, kind=pkind)
return f(aindexes)
答案 9 :(得分:0)
如果两侧都存在有限值,则以下解决方案通过 np.interp
在数组中插入 nan 值。 边界处的Nan 值由np.pad
以constant
或reflect
等模式处理。
import numpy as np
import matplotlib.pyplot as plt
def extrainterpolate_nans_1d(
arr, kws_pad=({'mode': 'edge'}, {'mode': 'edge'})
):
"""Interpolates and extrapolates nan values.
Interpolation is linear, compare np.interp(..).
Extrapolation works with pad keywords, compare np.pad(..).
Parameters
----------
arr : np.ndarray, shape (N,)
Array to replace nans in.
kws_pad : dict or (dict, dict)
kwargs for np.pad on left and right side
Returns
-------
bool
Description of return value
See Also
--------
https://numpy.org/doc/stable/reference/generated/numpy.interp.html
https://numpy.org/doc/stable/reference/generated/numpy.pad.html
https://stackoverflow.com/a/43821453/7128154
"""
assert arr.ndim == 1
if isinstance(kws_pad, dict):
kws_pad_left = kws_pad
kws_pad_right = kws_pad
else:
assert len(kws_pad) == 2
assert isinstance(kws_pad[0], dict)
assert isinstance(kws_pad[1], dict)
kws_pad_left = kws_pad[0]
kws_pad_right = kws_pad[1]
arr_ip = arr.copy()
# interpolation
inds = np.arange(len(arr_ip))
nan_msk = np.isnan(arr_ip)
arr_ip[nan_msk] = np.interp(inds[nan_msk], inds[~nan_msk], arr[~nan_msk])
# detemine pad range
i0 = next(
(ids for ids, val in np.ndenumerate(arr) if not np.isnan(val)), 0)[0]
i1 = next(
(ids for ids, val in np.ndenumerate(arr[::-1]) if not np.isnan(val)), 0)[0]
i1 = len(arr) - i1
# print('pad in range [0:{:}] and [{:}:{:}]'.format(i0, i1, len(arr)))
# pad
arr_pad = np.pad(
arr_ip[i0:], pad_width=[(i0, 0)], **kws_pad_left)
arr_pad = np.pad(
arr_pad[:i1], pad_width=[(0, len(arr) - i1)], **kws_pad_right)
return arr_pad
# setup data
ys = np.arange(30, dtype=float)**2/20
ys[:5] = np.nan
ys[20:] = 20
ys[28:] = np.nan
ys[[7, 13, 14, 18, 22]] = np.nan
ys_ie0 = extrainterpolate_nans_1d(ys)
kws_pad_sym = {'mode': 'symmetric'}
kws_pad_const7 = {'mode': 'constant', 'constant_values':7.}
ys_ie1 = extrainterpolate_nans_1d(ys, kws_pad=(kws_pad_sym, kws_pad_const7))
ys_ie2 = extrainterpolate_nans_1d(ys, kws_pad=(kws_pad_const7, kws_pad_sym))
fig, ax = plt.subplots()
ax.scatter(np.arange(len(ys)), ys, s=15**2, label='ys')
ax.scatter(np.arange(len(ys)), ys_ie0, s=8**2, label='ys_ie0, left_pad edge, right_pad edge')
ax.scatter(np.arange(len(ys)), ys_ie1, s=6**2, label='ys_ie1, left_pad symmetric, right_pad 7')
ax.scatter(np.arange(len(ys)), ys_ie2, s=4**2, label='ys_ie2, left_pad 7, right_pad symmetric')
ax.legend()
答案 10 :(得分:0)
正如之前的评论所建议的那样,最好的方法是使用同行评审的实现。 pandas 库有一个一维数据的插值方法,可以在 np.nan
或 Series
中插值 DataFrame
值:
pandas.Series.interpolate 或 pandas.DataFrame.interpolate
文档很简洁,推荐通读!我的实现:
import pandas as pd
magnitudes_series = pd.Series(magnitudes) # Convert np.array to pd.Series
magnitudes_series.interpolate(
# I used "akima" because the second derivative of my data has frequent drops to 0
method=interpolation_method,
# Interpolate from both sides of the sequence, up to you (made sense for my data)
limit_direction="both",
# Interpolate only np.nan sequences that have number sequences at the ends of the respective np.nan sequences
limit_area="inside",
inplace=True,
)
# I chose to remove np.nan at the tails of data sequence
magnitudes_series.dropna(inplace=True)
result_in_numpy_array = magnitudes_series.values