我试图使用openCV http://code.google.com/p/android-opencv/在Android中实现光流。基本上我想构建类似http://www.youtube.com/watch?v=P_Sjn67jIJY的东西。无论如何,因为我刚开始Android开发可以任何人指导某个地方,以便建立类似视频的那个?我已经安装了opencv端口到android并使用eclipse成功构建了cvcamera示例。 谢谢,Thanos
答案 0 :(得分:2)
参见斯坦福OpenCV光流link。事情应该以基本相同的方式工作,除非由于1.x与2.x的C与C ++ API问题,调用可能略有不同。
只需编辑CVCamera示例,它应该很快。我让CVCamera工作了大约一个小时后制作了一个实时的人脸检测应用程序。
答案 1 :(得分:1)
虽然我也在努力做同样的事情,但现在OpenCV4Android似乎对光流的支持更多了。 查看org.opencv.video中的API OpenCV Java documentation 我看到calcOpticalFlowPyrLK和calcOpticalFlowFarneback。 我能够使calcOpticalFlowFarneback工作(虽然结果似乎不太好,可能需要调整参数) calcOpticalFlowPyrLK被证明是棘手的。我似乎无法将FeatureDetector类(MatOfKeyPoint)返回的关键点转换为calcOpticalFlowFarneback(MatOfPoint2f)所需的点({3}}
答案 2 :(得分:0)
访问http://opencv.willowgarage.com/wiki/Android2.3.0,OpenCV 2.3.0 Release Candidate对Android有很好的支持。里面有光流......用它
答案 3 :(得分:0)
此代码将帮助您获取光学矢量。它会跟踪它们
@覆盖 public Mat onCameraFrame(CvCameraViewFrame inputFrame){
mRgba = inputFrame.rgba();
if (mMOP2fptsPrev.rows() == 0) {
//Log.d("Baz", "First time opflow");
// first time through the loop so we need prev and this mats
// plus prev points
// get this mat
Imgproc.cvtColor(mRgba, matOpFlowThis, Imgproc.COLOR_RGBA2GRAY);
// copy that to prev mat
matOpFlowThis.copyTo(matOpFlowPrev);
// get prev corners
Imgproc.goodFeaturesToTrack(matOpFlowPrev, MOPcorners, iGFFTMax, 0.05, 20);
mMOP2fptsPrev.fromArray(MOPcorners.toArray());
// get safe copy of this corners
mMOP2fptsPrev.copyTo(mMOP2fptsSafe);
}
else
{
//Log.d("Baz", "Opflow");
// we've been through before so
// this mat is valid. Copy it to prev mat
matOpFlowThis.copyTo(matOpFlowPrev);
// get this mat
Imgproc.cvtColor(mRgba, matOpFlowThis, Imgproc.COLOR_RGBA2GRAY);
// get the corners for this mat
Imgproc.goodFeaturesToTrack(matOpFlowThis, MOPcorners, iGFFTMax, 0.05, 20);
mMOP2fptsThis.fromArray(MOPcorners.toArray());
// retrieve the corners from the prev mat
// (saves calculating them again)
mMOP2fptsSafe.copyTo(mMOP2fptsPrev);
// and save this corners for next time through
mMOP2fptsThis.copyTo(mMOP2fptsSafe);
}
/*
Parameters:
prevImg first 8-bit input image
nextImg second input image
prevPts vector of 2D points for which the flow needs to be found; point coordinates must be single-precision floating-point numbers.
nextPts output vector of 2D points (with single-precision floating-point coordinates) containing the calculated new positions of input features in the second image; when OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.
status output status vector (of unsigned chars); each element of the vector is set to 1 if the flow for the corresponding features has been found, otherwise, it is set to 0.
err output vector of errors; each element of the vector is set to an error for the corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't found then the error is not defined (use the status parameter to find such cases).
*/
Video.calcOpticalFlowPyrLK(matOpFlowPrev, matOpFlowThis, mMOP2fptsPrev, mMOP2fptsThis, mMOBStatus, mMOFerr);
cornersPrev = mMOP2fptsPrev.toList();
cornersThis = mMOP2fptsThis.toList();
byteStatus = mMOBStatus.toList();
y = byteStatus.size() - 1;
for (x = 0; x < y; x++) {
if (byteStatus.get(x) == 1) {
pt = cornersThis.get(x);
pt2 = cornersPrev.get(x);
Core.circle(mRgba, pt, 5, colorRed, iLineThickness - 1);
Core.line(mRgba, pt, pt2, colorRed, iLineThickness);
}
}
return mRgba;
}