为什么使用相同的数据集进行训练和测试会产生不同的准确性?

时间:2020-11-06 21:06:38

标签: python tensorflow

我一直在研究训练和验证数据集的损失函数,即使它们是相同的数据集,我仍然看到验证损失比训练损失小。我正试图了解为什么会是这种情况。

我正在训练张量流模型来预测一些时间序列数据。 因此,模型的创建和预处理如下:

window_size = 40
batch_size  = 32
forecast_period = 6
model_name = "LSTM"
tf.keras.backend.clear_session()

_seed = 42
tf.random.set_seed(_seed)

def _sub_to_batch(sub):
    return sub.batch(window_size, drop_remainder=True)

def _return_input_output(tensor):
    _input  = tensor[:, :-forecast_period, :]
    _output = tensor[:, forecast_period:, :]
    return _input, _output

def _reshape_tensor(tensor):
    tensor = tf.expand_dims(tensor, axis=-1)
    tensor = tf.transpose(tensor, [1, 0, 2])
    return tensor


# total elements after unbatch(): 3813
train_ts_dataset = tf.data.Dataset.from_tensor_slices(train_ts)\
                            .window(window_size, shift=1)\
                            .flat_map(_sub_to_batch)\
                            .map(_reshape_tensor)\
                            .map(_return_input_output)
#                             .unbatch().shuffle(buffer_size=500, seed=_seed).batch(batch_size)\
#                             .map(_return_input_output)

valid_ts_dataset = tf.data.Dataset.from_tensor_slices(valid_ts)\
                            .window(window_size, shift=1)\
                            .flat_map(_sub_to_batch)\
                            .map(_reshape_tensor)\
                            .unbatch().shuffle(buffer_size=500, seed=_seed).batch(batch_size)\
                            .map(_return_input_output)

def _forecast_mae(y_pred, y_true):
    _y_pred = y_pred[:, -forecast_period:, :]
    _y_true = y_true[:, -forecast_period:, :]
    mae = tf.losses.MAE(_y_true, _y_pred)
    return mae

def _accuracy(y_pred, y_true):
    # print(y_true) => Tensor("sequential/time_distributed/Reshape_1:0", shape=(None, 34, 1), dtype=float32)
    # y_true[-forecast_period:, :]  =>   Tensor("strided_slice_4:0", shape=(None, 34, 1), dtype=float32)
    # y_true[:, -forecast_period:, :] => Tensor("strided_slice_4:0", shape=(None, 6, 1), dtype=float32)

    _y_pred = y_pred[:, -forecast_period:, :]
    _y_pred = tf.reshape(_y_pred, shape=[-1, forecast_period])
    _y_true = y_true[:, -forecast_period:, :]
    _y_true = tf.reshape(_y_true, shape=[-1, forecast_period])

    # MAPE: Tensor("Mean_1:0", shape=(None, 1), dtype=float32)
    MAPE = tf.math.reduce_mean(tf.math.abs((_y_pred - _y_true) / _y_true), axis=1, keepdims=True)

    accuracy = 1 - MAPE
    accuracy = tf.where(accuracy < 0, tf.zeros_like(accuracy), accuracy)
    accuracy = tf.reduce_mean(accuracy)
    return accuracy

model = k.models.Sequential([
    k.layers.Bidirectional(k.layers.LSTM(units=100, return_sequences=True), input_shape=(None, 1)),
    k.layers.Bidirectional(k.layers.LSTM(units=100, return_sequences=True)),
    k.layers.TimeDistributed(k.layers.Dense(1))
])

model_name = []
model_name_symbols = {"bidirectional": "BILSTM_1", "bidirectional_1": "BILSTM_2", "time_distributed": "td"}
for l in model.layers:
    model_name.append(model_name_symbols.get(l.name, l.name))

model_name = "_".join(model_name)
print(model_name)

for i, (x, y) in enumerate(train_ts_dataset):
    print(i, x.numpy().shape, y.numpy().shape)

数据集形状的输出如下:

BILSTM_1_BILSTM_2_td
0 (123, 34, 1) (123, 34, 1)
1 (123, 34, 1) (123, 34, 1)
2 (123, 34, 1) (123, 34, 1)
3 (123, 34, 1) (123, 34, 1)
4 (123, 34, 1) (123, 34, 1)
5 (123, 34, 1) (123, 34, 1)
6 (123, 34, 1) (123, 34, 1)
7 (123, 34, 1) (123, 34, 1)
8 (123, 34, 1) (123, 34, 1)

然后:

_datetime = datetime.datetime.now().strftime("%Y%m%d-%H-%M-%S")
_log_dir = os.path.join(".", "logs", "fit7", model_name, _datetime)

tensorboard_cb = k.callbacks.TensorBoard(log_dir=_log_dir)

model.compile(loss="mae", optimizer=tf.optimizers.Adam(learning_rate=0.001), metrics=[_forecast_mae, _accuracy])

history = model.fit(train_ts_dataset, epochs=100, validation_data=train_ts_dataset, callbacks=[tensorboard_cb])

我一直在研究训练和验证数据集的损失函数,并且我一直看到验证损失小于训练损失。我可能不适合。但是,我用训练集代替了验证集,将其作为一种简单的测试来监视训练和测试时的损失和准确性。但是我仍然获得比培训更好的验证准确性。以下是整个训练和验证数据集的准确性:

enter image description here

对我来说,很奇怪,尽管我使用相同的数据集进行训练和测试,但我得到的验证准确性要比训练准确性高。而且没有辍学,没有batchNormalization层等。

有关此行为的原因的任何提示?那将不胜感激!

================================================ ===================

在此处对代码进行了一些修改,以检查批处理大小是否有效。另外,为了消除tf.data.Dataset中的任何疑问,我使用了numpy数组作为输入。因此,新代码如下:

custom_train_ts   = train_ts.transpose(1, 0)[..., np.newaxis]
custom_train_ts_x = custom_train_ts[:, :window_size, :] # size: 123, window_size, 1
custom_train_ts_y = custom_train_ts[:, -window_size:, :] # size: 123, window_size, 1

custom_valid_ts   = valid_ts.transpose(1, 0)[..., np.newaxis]
custom_valid_ts_x = custom_valid_ts[:, :window_size, :]
custom_valid_ts_y = custom_valid_ts[:, -window_size:, :]
custom_valid_ts   = (custom_valid_ts_x, custom_valid_ts_y)

第二,为了确保准确性是在整个数据集上计算的,并且不依赖于批处理大小,我按原样输入了数据集,而不进行批处理。另外,我实现了以下自定义指标:

def _accuracy(y_true, y_pred):
    # print(y_true) => Tensor("sequential/time_distributed/Reshape_1:0", shape=(None, 34, 1), dtype=float32)
    # y_true[-forecast_period:, :]  =>   Tensor("strided_slice_4:0", shape=(None, 34, 1), dtype=float32)
    # y_true[:, -forecast_period:, :] => Tensor("strided_slice_4:0", shape=(None, 6, 1), dtype=float32)

    _y_pred = y_pred[:, -forecast_period:, :]
    _y_pred = tf.reshape(_y_pred, shape=[-1, forecast_period])
    _y_true = y_true[:, -forecast_period:, :]
    _y_true = tf.reshape(_y_true, shape=[-1, forecast_period])

    # MAPE: Tensor("Mean_1:0", shape=(None, 1), dtype=float32)
    MAPE = tf.math.reduce_mean(tf.math.abs((_y_pred - _y_true) / _y_true), axis=1, keepdims=True)

    accuracy = 1 - MAPE
    accuracy = tf.where(accuracy < 0, tf.zeros_like(accuracy), accuracy)        
    accuracy = tf.reduce_mean(accuracy)
    return accuracy


class MyAccuracy(tf.keras.metrics.Metric):
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.accuracy_function = _accuracy
        self.y_true_lst = []
        self.y_pred_lst = []

    def update_state(self, y_true, y_pred, sample_weight=None):
        self.y_true_lst.append(y_true)
        self.y_pred_lst.append(y_pred)

    def result(self):
        y_true_concat = tf.concat(self.y_true_lst, axis=0)
        y_pred_concat = tf.concat(self.y_pred_lst, axis=0)
        accuracy = self.accuracy_function(y_true_concat, y_pred_concat)
        self.y_true_lst = []
        self.y_pred_lst = []
        return accuracy
    def get_config(self):
        base_config = super().get_config()
        return {**base_config}

最后,模型编译并拟合为:

model.compile(loss="mae", optimizer=tf.optimizers.Adam(hparams["learning_rate"]), 
              metrics=[tf.metrics.MAE, MyAccuracy()])

history = model.fit(custom_train_ts_x, custom_train_ts_y, epochs=120, batch_size=123, validation_data=custom_valid_ts, 
                    callbacks=[tensorboard_cb])

当我在tensorboard中查看训练和验证准确性时,得到以下信息:

enter image description here

因此,显然,这没有任何意义。此外,在这种情况下,请确保在调用result()之后的纪元末尾,仅计算一次精度。但是,在查看验证损失时,我发现训练损失低于验证损失:

enter image description here

1 个答案:

答案 0 :(得分:-1)

它们是不同的,因为优化器会在每个批处理的末尾更新参数,并且val_loss将在末尾计算,而train_loss将在此过程中计算。

即使批次中只有一个样本,每个时期中只有一个批次,它们也会彼此不同,因为网络会为您的样本进行前向传递并计算损失,这称为{{1} },并在更新参数后再次计算损耗,这次将其称为train_loss(在这种情况下,下一个时期val_loss将等于当前的train_loss)。 / p>

因此,如果您想检查一下我刚才所说的话是否正确,只需将优化器的val_loss设置为learning_rate,就可以得到相同的损失。

这是我在MNIST上针对相同问题测试的代码(您可以通过here在我的合作实验室中临时查看代码和结果):

0

编译并适合多种情况:

# ---------------------------------
# Importing stuff
import numpy as np
import tensorflow as tf
from tensorflow import keras

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import *

from keras.utils import to_categorical

# ---------------------------------
(trainX, trainy), (testX, testy) = keras.datasets.mnist.load_data()

# one-hot
trainy = to_categorical(trainy, 10)
testy = to_categorical(testy, 10)

# image should be in shape of (28, 28, 1) not (28, 28)
trainX = np.expand_dims(trainX, -1)
testX = np.expand_dims(testX, -1)

# normalize
trainX = trainX/255.
testX = testX/255.

# ---------------------------------
# Build the model
model = Sequential()
model.add(Input(trainX.shape[1:]))
model.add(Flatten())
model.add(Dense(10, activation='softmax'))

model.summary()
# training on 1 sample, but with learning_rate != 0
opt = keras.optimizers.Adam(learning_rate = 0.001)
model.compile(optimizer = opt, loss='categorical_crossentropy', metrics=['categorical_accuracy'])

batchX = trainX[0].reshape(1, 28, 28, 1)
batchy = trainy[0].reshape(1, 10)

model.fit(batchX, batchy, validation_data = (batchX, batchy), batch_size = 1, 
          shuffle = False, validation_batch_size = 1, epochs = 5)

# You will see that the loss and val_loss are different and the
# next steps loss is equal to the current steps val_loss
# training on 1 sample, with learning_rate == 0
opt = keras.optimizers.Adam(learning_rate = 0)
model.compile(optimizer = opt, loss='categorical_crossentropy', metrics=['categorical_accuracy'])

batchX = trainX[0].reshape(1, 28, 28, 1)
batchy = trainy[0].reshape(1, 10)

model.fit(batchX, batchy, validation_data = (batchX, batchy), batch_size = 1, 
          shuffle = False, validation_batch_size = 1, epochs = 5)

# You will see that the loss and val_loss are equal because 
# the parameters will not change
# training on the complete dataset but with learning_rate != 0
opt = keras.optimizers.Adam(learning_rate = 0.001)
model.compile(optimizer = opt, loss='categorical_crossentropy', metrics=['categorical_accuracy'])

model.fit(trainX, trainy, validation_data = (trainX, trainy), batch_size = 32, 
          shuffle = False, validation_batch_size = 32, epochs = 5)

# this is similar to the case you asked