我使用此代码来预测x_test
中0和1的概率,但是结果只是一列概率。我真的不知道此列的概率是0还是1。
import numpy as np
from keras.models import Sequential
from keras.layers import Dense
data_train = np.array([
[0, 0, 0],
[0, 1, 0],
[0, 2, 0],
[0, 3, 0],
[1, 0, 0],
[2, 0, 0],
[3, 0, 0],
[1, 1, 1],
[2, 1, 1],
[1, 2, 1],
[3, 1, 1],
])
data_test = np.array([
[1, 3],
[0, 4],
[5, 0]
])
x_train = data_train[:, :-1]
y_train = data_train[:, -1]
x_test = data_test
model = Sequential()
model.add(Dense(512, activation='relu', input_dim=2))
model.add(Dense(200, activation='relu'))
model.add(Dense(200, activation='relu'))
model.add(Dense(128, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['binary_accuracy'])
model.fit(x_train, y_train, epochs=5, batch_size=1, verbose=1)
predict = model.predict_proba(x_test, batch_size=1)
print(predict)
结果只有1列:
[[0.9431795]
[0.47065434]
[0.08615088]]
我想要2列概率,第一列是0的概率,第二列是1的概率,例如:
[[0.23334,0.76267]
……
[0.84984,0.15685]
[0.16663,0.83291]]
如何解决?
答案 0 :(得分:2)
首先,您需要通过{p>将y_train
转换为单编码
from sklearn.preprocessing import LabelEncoder
from keras.utils import np_utils
encoder = LabelEncoder()
encoder.fit(y_train)
encoded_y = encoder.transform(y_train)
y_train = np_utils.to_categorical(encoded_y)
运行此代码,y_train
将变为
array([[1., 0.],
[1., 0.],
[1., 0.],
[1., 0.],
[1., 0.],
[1., 0.],
[1., 0.],
[0., 1.],
[0., 1.],
[0., 1.],
[0., 1.]], dtype=float32)
第二,您需要将输出层更改为
model.add(Dense(2, activation='softmax'))
通过这两个修改,您将获得所需的输出。