从包含嵌套字典的字典中提取数据,嵌套字典包含包含字典的列表

时间:2020-10-27 20:15:18

标签: python pandas dataframe dictionary

我收到一个api的响应,该api包含供暖系统的数据集,结构为带有嵌套字典的字典,嵌套字典包含包含字典的列表。

例如

    sample = {"zoneType": "HEATING",
              "interval": {"from": "2020-10-23T22:45:00.000Z", "to": "2020-10-24T23:15:00.000Z"},
              "hoursInDay": 24,
              "measuredData": {
                  "measuringDeviceConnected": {
                      "timeSeriesType": "dataIntervals",
                      "valueType": "boolean",
                      "dataIntervals": [{
                          "from": "2020-10-23T22:45:00.000Z", "to": "2020-10-24T23:15:00.000Z", "value": True}]
                          },
                  "insideTemperature": {
                      "timeSeriesType": "dataPoints",
                      "valueType": "temperature",
                      "min": {
                          "celsius": 19.34,
                          "fahrenheit": 66.81},
                      "max": {
                          "celsius": 20.6,
                          "fahrenheit": 69.08},
                      "dataPoints": [
                          {"timestamp": "2020-10-23T22:45:00.000Z", "value": {"celsius": 20.6, "fahrenheit": 69.08}},
                          {"timestamp": "2020-10-23T23:00:00.000Z", "value": {"celsius": 20.55, "fahrenheit": 68.99}},
                          {"timestamp": "2020-10-23T23:15:00.000Z", "value": {"celsius": 20.53, "fahrenheit": 68.95}},
                          {"timestamp": "2020-10-23T23:30:00.000Z", "value": {"celsius": 20.51, "fahrenheit": 68.92}},
                          {"timestamp": "2020-10-23T23:45:00.000Z", "value": {"celsius": 20.48, "fahrenheit": 68.86}},
                          {"timestamp": "2020-10-24T00:00:00.000Z", "value": {"celsius": 20.48, "fahrenheit": 68.86}},
                          {"timestamp": "2020-10-24T00:15:00.000Z", "value": {"celsius": 20.44, "fahrenheit": 68.79}}]
                  },
                  "humidity": {
                      "timeSeriesType": "dataPoints",
                      "valueType": "percentage",
                      "percentageUnit": "UNIT_INTERVAL",
                      "min": 0.615,
                      "max": 0.627,
                      "dataPoints": [
                          {"timestamp": "2020-10-23T22:45:00.000Z", "value": 0.615},
                          {"timestamp": "2020-10-23T23:00:00.000Z", "value": 0.615},
                          {"timestamp": "2020-10-23T23:15:00.000Z", "value": 0.619},
                          {"timestamp": "2020-10-23T23:30:00.000Z", "value": 0.620},
                          {"timestamp": "2020-10-23T23:45:00.000Z", "value": 0.621},
                          {"timestamp": "2020-10-24T00:00:00.000Z", "value": 0.623},
                          {"timestamp": "2020-10-24T00:15:00.000Z", "value": 0.627}]
                  }
              }}

我想从上面提取['insideTemperature'] ['datapoints']时间戳和摄氏值(实际数据跨越更多时间段),并将它们与''中的其他数据一起作为列放置在新的pd.DataFrame中。湿度”键。在适当的时候,我想将其与结构相似的单独API调用中的数据合并,尽管可能没有一致的时间戳值。

许多顶级词典都包含摘要数据(例如,最小值和最大值),因此可以忽略。同样,从摄氏到f等的转换很容易,如果需要的话,所以我不想提取这些数据。

干净地创建一个数据文件以列出该查询的时间戳,摄氏温度和湿度的最佳方法是什么,然后我可以将其与其他查询输出结合起来?

到目前为止,我一直在使用以下内容:

import pandas as pd
df = pd.DataFrame(sample['measuredData']['insideTemperature']['dataPoints'])

## remove column that contains dictionary data, leaving time data
df.drop(labels='value', axis=1, inplace=True)

## get temp data into new column
input_data_point = sample['measuredData']['insideTemperature']['dataPoints']

temps = []

for i in input_data_point:
    temps.append(i['value']['celsius'])

df['inside_temp_c'] = pd.DataFrame(temps)

## repeat for humidity
input_data_point = sample['measuredData']['humidity']['dataPoints']

temps = []

for i in input_data_point:
    temps.append(i['value'])

df['humidity_pct'] = pd.DataFrame(temps)

我是Python的新手,我想知道是否有一种更快的方法来从原始下载的数据中提取数据,直接提取到一个干净的Pandas DataFrame中?感谢任何建议。

1 个答案:

答案 0 :(得分:0)

您可以使用json_normalize来获取数据:

df1 = pd.json_normalize(sample,
                       record_path=['measuredData', 'insideTemperature', 'dataPoints'],
                       meta=['zoneType'])
print(df1)
df2 = pd.json_normalize(sample,
                       record_path=['measuredData', 'humidity', 'dataPoints'],
                       meta=['zoneType'])
print(df2)

df1:

                 timestamp  value.celsius  value.fahrenheit zoneType
0  2020-10-23T22:45:00.000Z          20.60             69.08  HEATING
1  2020-10-23T23:00:00.000Z          20.55             68.99  HEATING
2  2020-10-23T23:15:00.000Z          20.53             68.95  HEATING
3  2020-10-23T23:30:00.000Z          20.51             68.92  HEATING
4  2020-10-23T23:45:00.000Z          20.48             68.86  HEATING
5  2020-10-24T00:00:00.000Z          20.48             68.86  HEATING
6  2020-10-24T00:15:00.000Z          20.44             68.79  HEATING

df2:

                  timestamp  value zoneType
0  2020-10-23T22:45:00.000Z  0.615  HEATING
1  2020-10-23T23:00:00.000Z  0.615  HEATING
2  2020-10-23T23:15:00.000Z  0.619  HEATING