我有一个数据文件,其中包含以下年份,年份(DOY),小时和分钟:
> library(dplyr)
> df %>% group_by(csize) %>% mutate(across(v1:v3, ~ replace_na(., mean(., na.rm = T))))
# A tibble: 10 x 5
# Groups: csize [2]
name csize v1 v2 v3
<chr> <chr> <dbl> <dbl> <dbl>
1 a L 1.57 0.310 -1.76
2 b S -0.705 0.0655 0.577
3 c S -1.05 1.28 1.82
4 d L 0.958 -2.09 -0.371
5 e L -0.712 0.247 -1.13
6 f S -1.05 -0.516 -0.107
7 g L 0.403 1.79 0.128
8 h S -0.793 1.52 1.07
9 i L -0.206 -0.369 -1.77
10 j S -1.65 -0.992 -0.476
为了设置日期时间,我使用了:
BuoyID Year Hour Min DOY POS_DOY Lat Lon Ts
0 300234065718160 2019 7 0 216.2920 216.2920 58.559 -23.914 14.61
1 300234065718160 2019 9 0 216.3750 216.3750 58.563 -23.905 14.60
2 300234065718160 2019 10 0 216.4170 216.4170 58.564 -23.903 14.60
3 300234065718160 2019 11 0 216.4580 216.4580 58.563 -23.906 14.60
4 300234065718160 2019 12 0 216.5000 216.5000 58.561 -23.910 14.60
当时间不是 int 而是 float 时,就会出现我的问题。例如:
dt_raw = pd.to_datetime(df_buoy['Year'] * 1000 + df_buoy['DOY'], format='%Y%j')
# Convert to datetime
dt_buoy = [d.date() for d in dt_raw]
date = datetime.datetime.combine(dt_buoy[0], datetime.time(df_buoy.Hour[0], df_buoy.Min[0]))
我想做的是在 str 中转换小时,获取前两个索引,从而获得小时,然后从“小时”中减去小时并乘以60以得到分钟
BuoyID Year Hour Min DOY POS_DOY Lat Lon BP Ts
0 300234061876910 2014 23.33 0 226.972 226.972 71.93081 -141.0792 1016.9 -0.01
1 300234061876910 2014 23.50 0 226.979 226.979 71.93020 -141.0826 1016.8 3.36
2 300234061876910 2014 23.67 0 226.986 226.986 71.92968 -141.0856 1016.8 3.28
3 300234061876910 2014 23.83 0 226.993 226.993 71.92934 -141.0876 1016.8 3.22
4 300234061876910 2014 0.00 0 227.000 227.000 71.92904 -141.0894 1016.8 3.18
但是,当然,如果您将'0。'作为小时,Python会抱怨:
int_hour = [(int(str(i)[0:2])) for i in df_buoy.Hour]
minutes = map(lambda x, y: (x - y)*60, df_buoy.Hour, int_hour)
我的问题是:有人知道有一种简单的方法可以将年,DOY,小时( int 或* float)和分钟转换为日期时间吗?
答案 0 :(得分:1)
使用to_timedelta
来转换小时数列并添加到日期时间,可以很好地使用整数和浮点数:
df['d'] = (pd.to_datetime(df['Year'] * 1000 + df['DOY'], format='%Y%j') +
pd.to_timedelta(df['Hour'], unit='h'))
print (df)
BuoyID Year Hour Min DOY POS_DOY Lat Lon Ts \
0 300234065718160 2019 7 0 216.292 216.292 58.559 -23.914 14.61
1 300234065718160 2019 9 0 216.375 216.375 58.563 -23.905 14.60
2 300234065718160 2019 10 0 216.417 216.417 58.564 -23.903 14.60
3 300234065718160 2019 11 0 216.458 216.458 58.563 -23.906 14.60
4 300234065718160 2019 12 0 216.500 216.500 58.561 -23.910 14.60
d
0 2019-08-04 07:00:00
1 2019-08-04 09:00:00
2 2019-08-04 10:00:00
3 2019-08-04 11:00:00
4 2019-08-04 12:00:00
df['d'] = (pd.to_datetime(df['Year'] * 1000 + df['DOY'], format='%Y%j') +
pd.to_timedelta(df['Hour'], unit='h'))
print (df)
BuoyID Year Hour Min DOY POS_DOY Lat Lon \
0 300234061876910 2014 23.33 0 226.972 226.972 71.93081 -141.0792
1 300234061876910 2014 23.50 0 226.979 226.979 71.93020 -141.0826
2 300234061876910 2014 23.67 0 226.986 226.986 71.92968 -141.0856
3 300234061876910 2014 23.83 0 226.993 226.993 71.92934 -141.0876
4 300234061876910 2014 0.00 0 227.000 227.000 71.92904 -141.0894
BP Ts d
0 1016.9 -0.01 2014-08-14 23:19:48
1 1016.8 3.36 2014-08-14 23:30:00
2 1016.8 3.28 2014-08-14 23:40:12
3 1016.8 3.22 2014-08-14 23:49:48
4 1016.0 NaN 2014-08-15 00:00:00