我正在尝试编写自定义学习速率计划程序:余弦退火和预热。 但是我既不能在Keras中使用它,也不能在Tensorflow中使用它。 下面是代码:
import tensorflow as tf
import numpy as np
def make_linear_lr(min_lr, max_lr, number_of_steps):
def gen_lr(step):
return (max_lr - min_lr) / number_of_steps * step + min_lr
return gen_lr
def make_cosine_anneal_lr(learning_rate, alpha, decay_steps):
def gen_lr(global_step):
global_step = min(global_step, decay_steps)
cosine_decay = 0.5 * (1 + np.cos(np.pi * global_step / decay_steps))
decayed = (1 - alpha) * cosine_decay + alpha
decayed_learning_rate = learning_rate * decayed
return decayed_learning_rate
return gen_lr
def make_cosine_annealing_with_warmup(min_lr, max_lr, number_of_steps, alpha, decay_steps):
gen_lr_1 = make_linear_lr(min_lr, max_lr, number_of_steps)
gen_lr_2 = make_cosine_anneal_lr(max_lr, alpha, decay_steps)
def gen_lr(global_step):
if global_step < number_of_steps:
return gen_lr_1(global_step)
else:
return gen_lr_2(global_step - number_of_steps)
return gen_lr
class CosineAnnealingWithWarmUP(tf.keras.optimizers.schedules.LearningRateSchedule):
def __init__(self, min_lr, max_lr, number_of_steps, alpha, decay_steps):
super(CosineAnnealingWithWarmUP, self).__init__()
self.gen_lr_ca = make_cosine_annealing_with_warmup(min_lr, max_lr, number_of_steps, alpha, decay_steps)
def __call__(self, step):
return tf.cast(self.gen_lr_ca(step), tf.float32)
learning_rate_fn = CosineAnnealingWithWarmUP(.0000001, 0.01, 10_000, 0, 150_000)
optimizer=tf.keras.optimizers.SGD(
learning_rate=learning_rate_fn,
momentum=0.95)
我在TensorFlow中使用此功能来训练我的模型:
def get_model_train_step_function(model, optimizer, vars_to_fine_tune, batch_size):
@tf.function
def train_step_fn(image_tensors,
groundtruth_boxes_list,
groundtruth_classes_list):
shapes = tf.constant(batch_size * [[640, 640, 3]], dtype=tf.int32)
model.provide_groundtruth(
groundtruth_boxes_list=groundtruth_boxes_list,
groundtruth_classes_list=groundtruth_classes_list)
with tf.GradientTape() as tape:
preprocessed_images = tf.concat(
[model.preprocess(
image_tensor
)[0]
for image_tensor in image_tensors], axis=0)
prediction_dict = model.predict(preprocessed_images, shapes)
losses_dict = model.loss(prediction_dict, shapes)
total_loss = losses_dict['Loss/localization_loss'] + losses_dict['Loss/classification_loss']
gradients = tape.gradient(total_loss, vars_to_fine_tune)
optimizer.apply_gradients(zip(gradients, vars_to_fine_tune))
return total_loss
return train_step_fn
当我尝试将其与TensorFlow一起使用时,在get_model_train_step_function中传递优化器-如果删除@ tf.function装饰器,则该方法有效。但是它不适用于@ tf.function,错误显示:
OperatorNotAllowedInGraphError:不允许将tf.Tensor
作为Python bool
使用:AutoGraph确实转换了此函数。这可能表明您正在尝试使用不受支持的功能。
我应该如何编写自定义学习率计划程序?另外,我想将此时间表与Keras一起使用。但这根本不起作用。
答案 0 :(得分:1)
您需要排除numpy调用并用tensorflow运算符替换python条件(“ if”,“ min”):
def make_cosine_anneal_lr(learning_rate, alpha, decay_steps):
def gen_lr(global_step):
#global_step = min(global_step, decay_steps)
global_step = tf.minimum(global_step, decay_steps)
cosine_decay = 0.5 * (1 + tf.cos(3.1415926 * global_step / decay_steps)) # changed np.pi to 3.14
decayed = (1 - alpha) * cosine_decay + alpha
decayed_learning_rate = learning_rate * decayed
return decayed_learning_rate
return gen_lr
def make_cosine_annealing_with_warmup(min_lr, max_lr, number_of_steps, alpha, decay_steps):
gen_lr_1 = make_linear_lr(min_lr, max_lr, number_of_steps)
gen_lr_2 = make_cosine_anneal_lr(max_lr, alpha, decay_steps)
def gen_lr(global_step):
#if global_step < number_of_steps:
# return gen_lr_1(global_step)
#else:
# return gen_lr_2(global_step - number_of_steps)
a = global_step < number_of_steps
a = tf.cast(a, tf.float32)
b = 1. - a
return a * gen_lr_1(global_step) + b * gen_lr_2(global_step - number_of_steps)
return gen_lr
Keras这样的时间表很有效。