import joblib
from sklearn.externals.joblib import parallel_backend
with joblib.parallel_backend('dask'):
from dask_ml.model_selection import GridSearchCV
import xgboost
from xgboost import XGBRegressor
grid_search = GridSearchCV(estimator= XGBRegressor(), param_grid = param_grid, cv = 3, n_jobs = -1)
grid_search.fit(df2,df3)
我使用两台本地计算机创建了一个dask集群
client = dask.distributed.client('tcp://191.xxx.xx.xxx:8786')
我正在尝试使用dask gridsearchcv查找最佳参数。我遇到以下错误。
istributed.scheduler - ERROR - Couldn't gather keys {"('xgbregressor-fit-score-7cb7087b3aff75a31f487cfe5a9cedb0', 1202, 2)": ['tcp://127.0.0.1:3738']} state: ['processing'] workers: ['tcp://127.0.0.1:3738']
NoneType: None
distributed.scheduler - ERROR - Workers don't have promised key: ['tcp://127.0.0.1:3738'], ('xgbregressor-fit-score-7cb7087b3aff75a31f487cfe5a9cedb0', 1202, 2)
NoneType: None
distributed.client - WARNING - Couldn't gather 1 keys, rescheduling {"('xgbregressor-fit-score-7cb7087b3aff75a31f487cfe5a9cedb0', 1202, 2)": ('tcp://127.0.0.1:3738',)}
distributed.nanny - WARNING - Restarting worker
distributed.scheduler - ERROR - Couldn't gather keys {"('xgbregressor-fit-score-7cb7087b3aff75a31f487cfe5a9cedb0', 1, 2)": ['tcp://127.0.0.1:3730']} state: ['processing'] workers: ['tcp://127.0.0.1:3730']
NoneType: None
distributed.scheduler - ERROR - Couldn't gather keys {"('xgbregressor-fit-score-7cb7087b3aff75a31f487cfe5a9cedb0', 0, 1)": ['tcp://127.0.0.1:3730'], "('xgbregressor-fit-score-7cb7087b3aff75a31f487cfe5a9cedb0', 5, 1)": ['tcp://127.0.0.1:3729'], "('xgbregressor-fit-score-7cb7087b3aff75a31f487cfe5a9cedb0', 4, 2)": ['tcp://127.0.0.1:3729'], "('xgbregressor-fit-score-7cb7087b3aff75a31f487cfe5a9cedb0', 2, 1)": ['tcp://127.0.0.1:3730']} state: ['processing', 'processing', 'processing', 'processing'] workers: ['tcp://127.0.0.1:3730', 'tcp://127.0.0.1:3729']
NoneType: None
distributed.scheduler - ERROR - Couldn't gather keys {'cv-n-samples-7cb7087b3aff75a31f487cfe5a9cedb0': ['tcp://127.0.0.1:3729']} state: ['processing'] workers: ['tcp://127.0.0.1:3729']
NoneType: None
distributed.scheduler - ERROR - Couldn't gather keys {"('xgbregressor-fit-score-7cb7087b3aff75a31f487cfe5a9cedb0', 4, 0)": ['tcp://127.0.0.1:3729'], "('xgbregressor-fit-score-7cb7087b3aff75a31f487cfe5a9cedb0', 2, 0)": ['tcp://127.0.0.1:3729'], "('xgbregressor-fit-score-7cb7087b3aff75a31f487cfe5a9cedb0', 0, 0)": ['tcp://127.0.0.1:3729']} state: ['processing', 'processing', 'processing'] workers: ['tcp://127.0.0.1:3729']
NoneType: None
distributed.scheduler - ERROR - Couldn't gather keys {"('xgbregressor-fit-score-7cb7087b3aff75a31f487cfe5a9cedb0', 0, 2)": ['tcp://127.0.0.1:3729'], "('xgbregressor-fit-score-7cb7087b3aff75a31f487cfe5a9cedb0', 2, 2)": ['tcp://127.0.0.1:3729']} state: ['processing', 'processing'] workers: ['tcp://127.0.0.1:3729']
NoneType: None
distributed.scheduler - ERROR - Workers don't have promised key: ['tcp://127.0.0.1:3730'], ('xgbregressor-fit-score-7cb7087b3aff75a31f487cfe5a9cedb0', 1, 2)
NoneType: None
我希望有人能帮助解决这个问题。预先感谢。
答案 0 :(得分:0)
当我厌倦了在 ec2 实例上本地运行 dask 时,我遇到了同样的问题。为了解决它,我使用了:
from distributed import Client
from dask import config
config.set({'interface': 'lo'}) #<---found out to use 'lo' by running ifconfig in shell
client = Client()
这个问题帮我找到了解决方案:https://github.com/dask/distributed/issues/1281