我有一个应用程序会对位图产生鱼眼失真效果。要创建失真,我必须循环遍历整个位图,检查给定像素是否以圆形边界落下。如果它确实那么我操纵那个像素。这个过程是劳动密集型的,需要50秒。我正在考虑不同的方法,所以我不必循环整个位图来应用效果。 我有一个想法是首先绘制位图并显示它。然后创建第二个只有效果的位图叠加层。然后我可以在第一个位图上覆盖第二个位图。我只是试图想办法,我可以应用这种效果,而无需循环通过尽可能多的像素来加快速度。我将发布失真类。感谢。
class Filters{
private float xscale;
private float yscale;
private float xshift;
private float yshift;
private int [] s;
private int [] scalar;
private int [] s1;
private int [] s2;
private int [] s3;
private int [] s4;
private String TAG = "Filters";
long getRadXStart = 0;
long getRadXEnd = 0;
long startSample = 0;
long endSample = 0;
public Filters(){
Log.e(TAG, "***********inside filter constructor");
s = new int[4];
scalar = new int[4];
s1 = new int[4];
s2 = new int[4];
s3 = new int[4];
s4 = new int[4];
}
public Bitmap barrel (Bitmap input, float k,float cenx, float ceny){
//Log.e(TAG, "***********INSIDE BARREL METHOD ");
Debug.startMethodTracing("barrel");
//float centerX=input.getWidth()/2; //center of distortion
//float centerY=input.getHeight()/2;
float centerX=cenx;
float centerY=ceny;
int width = input.getWidth(); //image bounds
int height = input.getHeight();
Bitmap dst = Bitmap.createBitmap(width, height,input.getConfig() ); //output pic
// Log.e(TAG, "***********dst bitmap created ");
xshift = calc_shift(0,centerX-1,centerX,k);
float newcenterX = width-centerX;
float xshift_2 = calc_shift(0,newcenterX-1,newcenterX,k);
yshift = calc_shift(0,centerY-1,centerY,k);
float newcenterY = height-centerY;
float yshift_2 = calc_shift(0,newcenterY-1,newcenterY,k);
xscale = (width-xshift-xshift_2)/width;
// Log.e(TAG, "***********xscale ="+xscale);
yscale = (height-yshift-yshift_2)/height;
// Log.e(TAG, "***********yscale ="+yscale);
// Log.e(TAG, "***********filter.barrel() about to loop through bm");
/*for(int j=0;j<dst.getHeight();j++){
for(int i=0;i<dst.getWidth();i++){
float x = getRadialX((float)i,(float)j,centerX,centerY,k);
float y = getRadialY((float)i,(float)j,centerX,centerY,k);
sampleImage(input,x,y);
int color = ((s[1]&0x0ff)<<16)|((s[2]&0x0ff)<<8)|(s[3]&0x0ff);
// System.out.print(i+" "+j+" \\");
dst.setPixel(i, j, color);
}
}*/
int origPixel;
long startLoop = System.currentTimeMillis();
for(int j=0;j<dst.getHeight();j++){
for(int i=0;i<dst.getWidth();i++){
origPixel= input.getPixel(i,j);
getRadXStart = System.currentTimeMillis();
float x = getRadialX((float)j,(float)i,centerX,centerY,k);
getRadXEnd= System.currentTimeMillis();
float y = getRadialY((float)j,(float)i,centerX,centerY,k);
sampleImage(input,x,y);
int color = ((s[1]&0x0ff)<<16)|((s[2]&0x0ff)<<8)|(s[3]&0x0ff);
// System.out.print(i+" "+j+" \\");
//if( Math.sqrt( Math.pow(i - centerX, 2) + ( Math.pow(j - centerY, 2) ) ) <= 150 ){
if( Math.pow(i - centerX, 2) + ( Math.pow(j - centerY, 2) ) <= 22500 ){
dst.setPixel(i, j, color);
}else{
dst.setPixel(i,j,origPixel);
}
}
}
long endLoop = System.currentTimeMillis();
long loopDuration = endLoop - startLoop;
long radXDuration = getRadXEnd - getRadXStart;
long sampleDur = endSample - startSample;
Log.e(TAG, "sample method took "+sampleDur+"ms");
Log.e(TAG, "getRadialX took "+radXDuration+"ms");
Log.e(TAG, "loop took "+loopDuration+"ms");
// Log.e(TAG, "***********filter.barrel() looped through bm about to return dst bm");
Debug.stopMethodTracing();
return dst;
}
void sampleImage(Bitmap arr, float idx0, float idx1)
{
startSample = System.currentTimeMillis();
// s = new int [4];
if(idx0<0 || idx1<0 || idx0>(arr.getHeight()-1) || idx1>(arr.getWidth()-1)){
s[0]=0;
s[1]=0;
s[2]=0;
s[3]=0;
return;
}
float idx0_fl=(float) Math.floor(idx0);
float idx0_cl=(float) Math.ceil(idx0);
float idx1_fl=(float) Math.floor(idx1);
float idx1_cl=(float) Math.ceil(idx1);
/* float idx0_fl=idx0;
float idx0_cl=idx0;
float idx1_fl=idx1;
float idx1_cl=idx1;*/
/* int [] s1 = getARGB(arr,(int)idx0_fl,(int)idx1_fl);
int [] s2 = getARGB(arr,(int)idx0_fl,(int)idx1_cl);
int [] s3 = getARGB(arr,(int)idx0_cl,(int)idx1_cl);
int [] s4 = getARGB(arr,(int)idx0_cl,(int)idx1_fl);*/
s1 = getARGB(arr,(int)idx0_fl,(int)idx1_fl);
s2 = getARGB(arr,(int)idx0_fl,(int)idx1_cl);
s3 = getARGB(arr,(int)idx0_cl,(int)idx1_cl);
s4 = getARGB(arr,(int)idx0_cl,(int)idx1_fl);
float x = idx0 - idx0_fl;
float y = idx1 - idx1_fl;
s[0]= (int) (s1[0]*(1-x)*(1-y) + s2[0]*(1-x)*y + s3[0]*x*y + s4[0]*x*(1-y));
s[1]= (int) (s1[1]*(1-x)*(1-y) + s2[1]*(1-x)*y + s3[1]*x*y + s4[1]*x*(1-y));
s[2]= (int) (s1[2]*(1-x)*(1-y) + s2[2]*(1-x)*y + s3[2]*x*y + s4[2]*x*(1-y));
s[3]= (int) (s1[3]*(1-x)*(1-y) + s2[3]*(1-x)*y + s3[3]*x*y + s4[3]*x*(1-y));
endSample = System.currentTimeMillis();
}
int [] getARGB(Bitmap buf,int x, int y){
int rgb = buf.getPixel(y, x); // Returns by default ARGB.
// int [] scalar = new int[4];
scalar[0] = (rgb >>> 24) & 0xFF;
scalar[1] = (rgb >>> 16) & 0xFF;
scalar[2] = (rgb >>> 8) & 0xFF;
scalar[3] = (rgb >>> 0) & 0xFF;
return scalar;
}
float getRadialX(float x,float y,float cx,float cy,float k){
x = (x*xscale+xshift);
y = (y*yscale+yshift);
float res = x+((x-cx)*k*((x-cx)*(x-cx)+(y-cy)*(y-cy)));
return res;
}
float getRadialY(float x,float y,float cx,float cy,float k){
x = (x*xscale+xshift);
y = (y*yscale+yshift);
float res = y+((y-cy)*k*((x-cx)*(x-cx)+(y-cy)*(y-cy)));
return res;
}
float thresh = 1;
float calc_shift(float x1,float x2,float cx,float k){
float x3 = (float)(x1+(x2-x1)*0.5);
float res1 = x1+((x1-cx)*k*((x1-cx)*(x1-cx)));
float res3 = x3+((x3-cx)*k*((x3-cx)*(x3-cx)));
if(res1>-thresh && res1 < thresh)
return x1;
if(res3<0){
return calc_shift(x3,x2,cx,k);
}
else{
return calc_shift(x1,x3,cx,k);
}
}
}// end of filters class
[更新] 嗨,我没有看过所有的视频因素我只在加密狗上有这么多的数据限额,所以要等到工作时再观看它。我已将代码修改为下面的代码。这将像素数据存储在int数组中,因此不会调用dst.setPixel。它仍然非常慢(在320万像素摄像头上持续14秒)根本不像你的代码那样几秒钟。你可以分享那些代码,或者告诉我这是不是你的意思。谢谢马特。
int origPixel = 0;
int []arr = new int[input.getWidth()*input.getHeight()];
int color = 0;
int p = 0;
int i = 0;
for(int j=0;j<dst.getHeight();j++){
for( i=0;i<dst.getWidth();i++,p++){
origPixel= input.getPixel(i,j);
float x = getRadialX((float)j,(float)i,centerX,centerY,k);
float y = getRadialY((float)j,(float)i,centerX,centerY,k);
sampleImage(input,x,y);
color = ((s[1]&0x0ff)<<16)|((s[2]&0x0ff)<<8)|(s[3]&0x0ff);
// System.out.print(i+" "+j+" \\");
//if( Math.sqrt( Math.pow(i - centerX, 2) + ( Math.pow(j - centerY, 2) ) ) <= 150 ){
if( Math.pow(i - centerX, 2) + ( Math.pow(j - centerY, 2) ) <= 22500 ){
//dst.setPixel(i, j, color);
arr[p]=color;
Log.e(TAG, "***********arr = " +arr[i]+" i = "+i);
}else{
//dst.setPixel(i,j,origPixel);
arr[p]=origPixel;
}
}
}
// Log.e(TAG, "***********filter.barrel() looped through bm about to return dst bm");
Debug.stopMethodTracing();
Bitmap dst2 = Bitmap.createBitmap(arr,width,height,input.getConfig());
return dst2;
}
答案 0 :(得分:1)
我敢打赌,如果你在内循环中消除了对dst.setPixel的调用,你会大大减少你的执行时间。而不是在循环内的Bitmaps上操作,在循环期间将值填充到整数数组中,并在传入数组的末尾调用setPixels。
我有图像处理代码,可以在几秒钟内循环整个2MP图像。
在较旧的Android api上(我相信早于2.3,但它甚至可能包括2.3),实际的图像数据不会驻留在托管堆中,因此可能会进行一些昂贵的操作来查找位的实际位置'在setPixel的调用中重写。我的信息来源是关于Android内存管理的Google I / O 2011视频。如果您在Android中进行此类工作,则必须注意: