我有一个包含列表列的数据框:
col_1
[A, A, A, B, C]
[D, B, C]
[C]
[A, A, A]
NaN
如果列表以3 * A
开头,我想创建新列,如果不返回0,则返回1:
col_1 new_col
[A, A, A, B, C] 1
[D, B, C] 0
[C] 0
[A, A, A] 1
NaN 0
我尝试了这个,但是没用:
df['new_col'] = df.loc[df.col_1[0:3] == [A, A, A]]
答案 0 :(得分:2)
由于存在一些非列表值,如果没有列表,可以对if-else
使用0
lambda函数:
print (df['col_1'].map(type))
0 <class 'list'>
1 <class 'list'>
2 <class 'list'>
3 <class 'list'>
4 <class 'float'>
Name: col_1, dtype: object
f = lambda x: int((x[:3]) == ['A','A','A']) if isinstance(x, list) else 0
df['new_col'] = df['col_1'].map(f)
#alternative
#df['new_col'] = df['col_1'].apply(f)
print (df)
col_1 new_col
0 [A, A, A, B, C] 1
1 [D, B, C] 0
2 [C] 0
3 [A, A, A] 1
4 NaN 0
答案 1 :(得分:1)
通过应用lambda解决方案:
df = pd.DataFrame({
'col_1': [
['A', 'A', 'A', 'B', 'C'],
['D', 'B', 'C'],
['C'],
['A', 'A', 'A']
]
})
df['new_col'] = df.col_1.apply(lambda x: x[0:3] == ['A', 'A', 'A'] if isinstance(x, list) else False).view('i1')
df.head()
输出:
答案 2 :(得分:1)
这是使用map
的另一种可能的解决方案:
import pandas as pd
#borrowing dataframe from @Alexendra
df = pd.DataFrame({
'col_1': [
['A', 'A', 'A', 'B', 'C'],
['D', 'B', 'C'],
['C'],
['A', 'A', 'A']
]
})
df['new_col'] = df['col_1'].map(lambda x : 1 if x[0:3] == ['A','A','A'] else 0)
print(df)
输出:
col_1 new_col
0 [A, A, A, B, C] 1
1 [D, B, C] 0
2 [C] 0
3 [A, A, A] 1